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ABSTRACT

We describe the development of a superconducting microwave oscillator with high frequency
stability for use aboard the International Space Station. The project has four main goals; an
improved test of Local Position Invariance, improved Kennedy Thorndyke and Michelson−
Morley special relativity tests, and an enhancement of the performance of atomic clocks being
developed elsewhere for use in space. In addition precision clocks play an important role in
experimental tests of Lorentz and CPT violation. Aboard the International Space Station,
unwanted resonant−frequency variations are expected to be caused mainly by acceleration effects
due to residual drag and vibration, temperature variations, and fluctuations in the energy stored in
the cavity. In the past, acceleration effects appeared to be the predominant limit. A new cavity
support system has been designed to reduce the acceleration effects and a fractional frequency
sensitivity of 1 part in 1017 per µg has been demonstrated. 

INTRODUCTION

On large length scales and under extreme conditions Einstein’s theory of general relativity
encapsulates many of the fundamental physical laws used for predicting the intertwined behavior
of matter and spacetime. One of the most fundamental aspects of this theory is the behavior of
clocks. So far, clocks have been used to test the theory in three different ways. A hydrogen
maser was used to measure the gravitational red shift1 to about a part in 104 using a rocket flight
to an altitude of 10,000 km. The time delay for electromagnetic signals passing close to the sun
has been measured2 to a part in 103.  Finally, the assumption of Local Position Invariance (LPI) in
the Einstein Equivalence Principle has been tested3 to 2%. Beyond general relativity, clocks have
been used to test some of the foundations of special relativity by looking for effects due to a
possible anisotropy of the velocity of light4, and to set bounds5 on the present rate of change of
the fine structure constant.

The LPI principle of general relativity states that clocks made in different ways all keep exactly
the same time, no matter where they are co−located in the universe. This might not be true if
some of the laws of physics vary slightly from place to place. One of our goals is to perform an
improved LPI test by comparing the microwave cavity frequency with that of an atomic clock to
a part in 1016, as a function of position and gravitational potential as the Earth travels in its
eccentric orbit around the Sun. A basis of the test is the observation that the frequencies of a
microwave cavity and an atomic clock have different dependencies on fundamental physical
constants3. Alternatively, one can view the experiment as setting limits on effects predicted by
various theories competing with special relativity as descriptions of the interaction of matter and
spacetime such as the Lorentz− and CPT−violating Standard−Model extension6. 
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Tests of the foundations of special relativity fall into two main classes: one involving angle−
dependent effects and the other absolute velocity effects. A generalized treatment of the Lorentz
transformations has been given by Mansouri and Sexl7 (1977) who consider the possibility of an
anisotropic propagation velocity of light relative to a preferred frame. If a laboratory is assumed
to be moving at a velocity v at an angle θ relative to the axis of a preferred frame, the speed of
light as a function of θ is given by

c(θ)/c  =  1 + (1/2 − β + δ)v2/c2sin2θ +  (β − α − 1)v2/c2                    (1)

where α is the time dilation parameter, β is the Lorentz contraction parameter, and δ tests for
transverse contraction, to be determined either experimentally or in the particular theory being
considered. In special relativity the last two terms on the right hand side of equation 1 are zero.
In a Michelson−Morley experiment the amplitude of the θ−dependent term is measured, while in
a Kennedy−Thorndyke experiment the amplitude of the θ−independent term is determined. To
evaluate experiments it is often assumed that the preferred frame is the rest frame of the cosmic
microwave background. In this case by far the biggest contributor to v is the apparent velocity of
the earth along the anisotropy axis, approximately 370 km/sec.  

With the advent of the International Space Station (ISS), substantially greater resolution is
achievable for these relativity tests. The relative velocity of an experiment on the ISS would be
modulated at the orbital period as measured in inertial coordinates giving rise to the periodically
varying clock signal. Since the modulation of the velocity vector is due to the ISS orbital motion,
it is clear that certain flight times could be more favorable than others to perform the experiment.
Also, since the orbital plane precesses at approximately 5°/day, significant changes in the signal
would be expected with time. This easily modeled signature would be valuable if an effect was
detected. In the case of the θ−dependent class, a signal could be generated by mounting two
cavities at right angles, since their frequencies are sensitive to the velocity of light only in the
radial directions. At present the best limit8 on this form of isotropy is (1/2 − β + δ) < 3×10−9. By
comparing the frequencies of two orthogonally mounted cavities at twice orbital roll rate, the
limit for this effect could be improved of a factor of about 300 with a few days averaging. The
present limit9 on theKennedy−Thorndyke term is (β − α − 1) < 6.6x10−5. With an Allan variance
of 5x10−16 referencing to an atomic clock, and averaging over 100 orbits, we would expect to set
a limit of ~ 8x10−10, a factor of 8x104 improvement. This signal would be modulated at theorbital
period.

With the advent of laser−cooled atoms, the prospects for substantially more stable atomic clocks
have dramatically improved. It now appears that laser−cooled cesium and rubidium frequency
standards with stability of better that 10−16 are feasible in space, and single atom clocks with a
stability of 10−18 are discussed. When coupled with superconducting cavity oscillators (SCOs)
these developments open up new possibilities for experiments in fundamental physics. In
collaboration with the Jet Propulsion Laboratory we are developing a superconducting
microwave oscillator (SUMO), a space version of the SCO. SUMO will be an insert in the Low
Temperature Microgravity Physics Facility (LTMPF) and will require three to six months of
operation in order to meet its science objectives. Longer−term experiments, using two or more
oscillators and separate facilities, include precision red−shift measurements and possibly the
detection of gravitational waves10. The possibility of using SCOs for pulsar timing in space has
also been mentioned11. SUMO should significantly augment the scope and capability of the space
clock ensemble by acting as a high stability, low phase noise ’ flywheel’ when slaved to an atomic
clock.
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APPARATUS

The apparatus consists of a pair of superconducting cavities mounted on thermally controlled
stages at 1.4 K and located in separate cryostats. The cylindrical−symmetry axis of one cavity
was oriented horizontally. The axis of the other cavity was oriented vertically and acted as a
reference for the cavity under test. This arrangement discriminates against common mode
variations in the SCO such as helium level, acceleration and temperature variations which could
be masked if the cavities were in the same cryostat. Magnetic shields were used to reduce the
field at the cavity to ~ 10−3 Gauss. The connections between the cavities and the room
temperature electronics were made using stainless steel semi−rigid coaxial cable. The SCO
electronics system utilized the high Q cavity resonance to stabilize a voltage−controlled oscillator
(VCO). A small part of the power of the VCO was used to excite the cavity. This signal was
frequency−modulated at 1 MHz, and the amplitude−modulated component reflected by the cavity
was detected. The phase and amplitude of this signal represented the deviation of the VCO
frequency from the cavity frequency, and were used to servo the VCO frequency. Figure 1 shows
a block diagram of a frequency control loop. The VCO consisted of a voltage controlled 10 Mhz
quartz oscillator which acted as a reference for a frequency modulated microwave synthesizer.
The outputs from the two microwave synthesizers locked to individual cavities are beat against
each other to produce difference frequencies of a few tens of Hz. This signal can be utilized to
look for variations in the speed of light in two orthogonal cavities.

   

RECENT PROGRESS

Accelerations of the cavity, such as that due to the earth’s gravitational pull, cause distortions in
the cavity shape. When these distortions change the radius of the cavity, they can cause a shift in
the resonant frequency. To minimize the frequency changes that occur due to changing
accelerations we have designed a supporting structure for the cavity that takes advantage of some
of the symmetries in the cavity design. Figure 2 shows a cross−sectional view of a new cavity
now in test. The design is based on a finite−element analysis of the effects of acceleration on the
cavity dimensions, and numerical calculations of the fields inside the cavity at the walls, plus the
perturbation of theenergy of the fields in the cavity due to the wall displacement. Supporting the
cavity radially around its center reduces the sensitivity of the frequency to acceleration because
of symmetry. By varying the geometry of the supporting structure one can theoretically reduce
the frequency shift to zero, but this would require precise control of cavity and support
dimensions as well as a high confidence in the numeric calculation. In practice we can fine tune

     
T = 1.2 K

L

RI
AC

Tunnel
Diode
Detector

Reference

8.6 GHz

10 MHz VCO

Cavity

Controler
PI

1 MHz FM

Fig. 1)  SCO electronics block diagram. Fig. 2) Cutaway of the center mounted cavity.
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the support structure by adding mass to the ends of the cavity. On the ISS the residual
accelerations at very low frequencies are mostly caused by aerodynamic drag and are estimated
to be below 10−6 g, potentially allowing fractional frequency stability in the 10−18 range

Evaluation of the case with the acceleration vector perpendicular to the axis of symmetry requires
calculations performed with a full three dimensional model. When this vector is transverse, the
overall displacement of the cavity is much greater than the non−symmetric distortions we are
sensitive to. Because of this, numeric noise in the three dimensional calculations was clearly
visible at the level of 10−19 ∆f/f per µg. For the models investigated there were no asymmetric
distortions of the cavity above this numerical noise floor. 

We mounted the center−supported cavity with its symmetry axis horizontal in order to maximize
its sensitivity to axial acceleration when the cryostat is tilted. A second cavity in a fixed cryostat
was used for the reference. The center mounted cavity had a Q of 2x109 at about 1.4K. It was
tilted over a range of 2 degrees and a fractional frequency sensitivity of less than 1 part in 1017

per µg was measured. 

Near 1.4K the temperature coefficient of the cavity frequency is typically ∆f/f ~ 3x10−9 per
degree. Thus to achieve a signal stability of 10−16 at orbital periods we need to control the cavity
temperature to about ± 3x10−8 K. The recent flight of the CHEX experiment12 on the Shuttle has
demonstrated that this is within the range of existing capability using advanced high resolution
thermometry techniques. For SUMO we are using a new type of sensor13 made from a
palladium−manganese alloy with 99.59 atomic percentage Pd and 0.41% Mn. This has a Curie
temperatureof about 1K14. The transition temperatureof this alloy can beadjusted to any desired
temperature below 4K by changing the concentration of Mn. Temperature control has been
demonstrated to 300 nK indicating a fractional frequency stability of 10−15 in one second. For the
half orbital period the temperature stability is dominated by thermometer drift.

The major issue with thermal control is the varying energy dump from charged particle radiation
as the experiment moves around the ISS orbit. We can make an estimate of this effect by scaling
from the observations on CHEX to the present situation. It is expected that the variations in the
radiation environment will be as much as a factor of five worse on ISS relative to the 28°
inclination Shuttle case, but we expect to have adequate margin relative to the ± 3x10−7 K
requirement. A more quantitative analysis is in progress.

CONCLUSIONS

We have described a project to place superconducting cavity oscillators in orbit on the ISS. Our
recent measurements have achieved levels of ~5x10−16 for time scales of 100 to 3000 seconds at
1.4 K, competitive with modern atomic clocks. A design suitable for use in space is under
development. On the ISS the cavities can be used in conjunction with atomic clocks to perform
tests of relativity, and as low phase−noise flywheels for atomic fountain experiments. Our
analysis of the limitations of superconducting cavity oscillators indicates that improvements to
the 10−17 range are quite possible. Acceleration sensitivity measurements are consistent with this
number and temperature stability is approaching this goal.
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Space-Based Searches for Lorentz and CPT Violation 1

Neil Russell
Physics Department, Northern Michigan University, Marquette, MI 49855, U.S.A.

email: nrussell@nmu.edu

In this talk, a summary is presented of recent research investigating ways in which high-
precision atomic clocks on the International Space Station could search for violations of
Lorentz and CPT symmetry. Space-based searches offer certain experimental advantages
over Earth-based experiments investigating these symmetries. The results are based on
work published in Physical Review Letters, volume 82, article 090801, 2002.

1. Introduction

This contribution to the proceedings of the 2002 NASA/JPL Workshop on Fundamental
Physics in Space summarizes recent research [1] aimed at using atomic clocks and other
apparatus on the International Space Station to search for violations of Lorentz and CPT
symmetry at the Planck scale. We consider generalities relating to experiments mounted
on spacecraft and consider some tests that could be performed using clocks planned for
installation on the International Space Station (ISS). This work was done in collaboration
with Robert Bluhm, Alan Kostelecký, and Charles Lane.

Lorentz symmetry is a feature of the standard model of particle physics. A considerable
body of research exists investigating the possible violation of Lorentz symmetry, however.
From the theoretical view, the motivation for this effort lies in discovering new physics
beyond the standard model. From the experimental side, the rapidly improving sensitivities
of various experiments may reveal previously unresolved effects. Recent theoretical work on
Lorentz and CPT symmetry includes the development of a framework that allows for general
minuscule violations of these symmetries in the context of particle physics. This framework
is known as the standard-model extension [2].

Associated with the standard-model extension is a range of literature discussing a va-
riety of theoretical issues, as well as a growing number of experimental results bounding
possible effects. The violation of Lorentz symmetry [3] may arise in the context of string
theory, and may be accompanied also by CPT violation [4]. Violation of Lorentz and CPT
symmetry has also been discussed in the context of supersymmetry [5], and noncommuta-
tive field theory [6]. The standard-model extension is expected to be the low-energy limit
of some fundamental underlying theory, and so the violations would most likely be sup-
pressed by ratios involving the low-energy mass and the 1019-GeV Planck mass. The broad
applicability of the standard-model extension to all areas of physics is an attractive fea-
ture. Among the interesting implications is a possible mechanism for generating the baryon
asymmetry in the universe [7]. For the neutral mesons, some bounds on standard-model
extension parameters exist for the neutral K and D mesons, and results are anticipated for
the neutral B system [8, 9, 10, 11]. In the photon sector, data from distant cosmological

1Presented by Alan Kostelecký at the 2002 NASA/JPL Workshop for Fundamental Physics in Space,
Dana Point, CA, May 2002.
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sources places stringent bounds on Lorentz symmetry [2, 12, 13]. In the lepton sector, recent
results have come from a muonium experiment, and from anomaly-frequency comparisons of
oppositely-charged muons at CERN and BNL [14]. Earlier work considered electron-positron
comparisons using Penning traps [15]. Impressive results are possible with a spin-polarized
torsion pendulum [16].

Of particular relevance here are clock-comparison experiments with atoms and ions [17,
18, 19, 20]. Such experiments can identify spectral lines with resolutions at the Planck
scale [21]. The general principle of a clock-comparison experiment is to search for violations of
rotational symmetry by monitoring the frequency variations of a Zeeman hyperfine transition
as the quantization axis changes direction. Usually, the frequencies of two different clocks are
monitored as the laboratory rotates with the Earth. To avoid issues with signals travelling
between two different locations, the clocks are co-located. Placing such an experiment in
a satellite may produce results slightly better than have been achieved on earth, and this
proceedings aims to consider some of the issues associated with this possibility.

2. Clocks and Inertial Frames

Atomic transitions can be measured with great precision and so are suitable candidates for
time standards. In conventional physics with constant laboratory conditions, these clock
frequencies are constant quantities. However, in the standard-model extension with Lorentz
and CPT violation, some Zeeman hyperfine transitions are shifted in frequency [21]. For an
experiment operating on such a transition, these shifts are controlled at leading order by
parameters denoted in the clock reference frame as b̃w

3 , c̃w
q , d̃w

3 , g̃w
d , g̃w

q . Here, the superscript
w is p for the proton, n for the neutron, and e for the electron. These quantities are
particular combinations of the basic coefficients aw

µ , bw
µ , cw

µν , dw
µν , ew

µ , fw
µ , gw

λµν , Hw
µν appearing

in the standard-model extension, and are related to expectation values in the underlying
fundamental theory. For example,

b̃w
3 = bw

3 −mwdw
30 + mwgw

120 −Hw
12 , (1)

where mw is the mass of the particle of type w and the subscripts are indices defined in a
reference frame with the 3 direction defined as the clock quantization axis.

In the case of an Earth-based laboratory, the parameters b̃w
3 , c̃w

q , d̃w
3 , g̃w

d , g̃w
q are not

fixed, but vary in time due to the sidereal rotation of the Earth with period 23 h 56 min '
2π/Ω. The mathematical form of this time dependence can be found by considering the
transformation from the laboratory frame containing the clock, with coordinates numbered
(0, 1, 2, 3), to a suitable nonrotating frame with coordinates (T,X, Y, Z). Ideally, an inertial
nonrotating frame is required, but for practical purposes any frame sufficiently inertial for
the desired experimental sensitivity may be selected. Frames associated with the Earth, the
Sun, the Milky Way galaxy, or the cosmic microwave background radiation would be possible
choices for the inertial frame.

In earlier literature, the nonrelativistic transformation from the clock frame to the nonro-
tating frame has been considered [21]. In the case of space-based experiments, leading-order
relativistic effects are of interest. An Earth-centered choice of reference frame must then be

2
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rejected for such relativistic investigations because it is inertial over a limited time scale of
perhaps a few days. Frames centered on the Sun, the galaxy, or the microwave background
are approximately inertial over thousands of years, and are all acceptable for experiments.
The choice of frame must be stated when reporting bounds on components of coefficients of
Lorentz violation, since the numerical values will be frame-dependent.

A good choice of reference frame for our purposes is one centered on the Sun. So, we
select the spatial origin on the Sun, the Ẑ unit vector parallel to the Earth’s rotation axis,
the X̂ unit vector in the equatorial plane pointing at the celestial vernal equinox, and Ŷ
completing the right-handed system. The origin of the time variable T is taken to be the
vernal equinox in the year 2000, using a clock located at the spatial origin. In this system,
the Earth orbits about the Sun in a plane tilted at an angle of η ' 23◦ relative to the XY
plane.

An adequate geometrical description of the orbital configuration can be obtained by
approximating the Earth’s orbit as a circular trajectory with angular frequency Ω⊕ and
speed β⊕. In addition, a satellite orbit about the Earth is approximated as circular with
angular frequency ωs and speed βs. We use ζ to denote the angle between Ẑ and the axis
of the satellite orbit. We denote by α the right ascension angle of the ascending node of the
orbit. In the case of the ISS, α precesses by a few degrees per day.

Time intervals on a clock in a satellite are dilated when seen from the inertial Sun frame.
Relative to the Sun-based frame, the clock velocity is ~V (T ) = d ~X/dT , where the position

vector ~X(T ) of the clock is determined by positions of the Earth and the spacecraft. This

vector ~V (T ) is needed to obtain an accurate conversion between the times in the laboratory
and in the Sun frame. In principle, effects such as perturbations in this vector and in the
gravitational potential should be included in this description. In practice, these corrections
may be neglected because the experiments involve comparing two clocks within the same
satellite, which are essentially at the same location. In this case, standard relativity predicts
identical rates of advance of the clocks. However, in the presence of Lorentz and CPT
violation, clocks composed of different atomic species will be differently affected, despite
being co-located .

Pertinent issues exist concerning the optimal orientation of the clock quantization axis
relative to the geometric configuration of the system. If the clock apparatus is fixed within
the satellite, the flight mode of the satellite will determine the clock quantization axis relative
to the Sun frame. For this proceedings, we focus on a flight mode with quantization axis
tangential to the circular satellite trajectory about the Earth. We choose the clock reference
frame with 3 axis parallel to the satellite motion about the Earth, 1 axis pointing towards the
center of the Earth, and 2 axis perpendicular to the satellite orbital plane. This configuration
would be possible with some clock experiments on the ISS. The results outlined here are
specific examples, but we note that other modes of flight and quantization-axis configurations
can be handled by the methods discussed here. It is important to note that sensitivity to
some components is only possible with specific quantization-axis orientations.

Experiments searching for Lorentz and CPT violation in the context of the standard-
model extension are aimed at measuring the tensor-like parameters aw

µ , bw
µ , cw

µν , dw
µν , ew

µ , fw
µ ,

3
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gw
λµν , Hw

µν in our standard solar reference frame. Measurements made in the laboratory frame
must be transformed to the Sun-based frame by taking into account the relevant rotation
and boost ~V (T ). This means that the components of the coefficients for Lorentz violation
in the clock frame must be expressed in terms of components in the Sun-based frame. To
give an example, the transformation of the component bw

3 is

bw
3 = bw

T {βs − β⊕[sin Ω⊕T (cos α sin ωs∆T

+ cos ζ sin α cos ωs∆T )− cos η cos Ω⊕T

×(sin α sin ωs∆T − cos ζ cos α cos ωs∆T )

+ sin η cos Ω⊕T sin ζ cos ωs∆T ]}
−bw

X(cos α sin ωs∆T + cos ζ sin α cos ωs∆T )

−bw
Y (sin α sin ωs∆T − cos ζ cos α cos ωs∆T )

+bw
Z sin ζ cos ωs∆T, (2)

where ∆T = T − T0 is the time interval measured from an agreed reference time T0. This
transformation ignores effects such as the Thomas precession, holding only up to leading
order in the velocities. The above result for bw

3 has to be included with the transformations
for the other coefficients to get the full result for the observable parameter b̃w

3 in the Sun
frame. The other coefficients c̃w

q , d̃w
3 , g̃w

d , and g̃w
q are found by a similar method. The

expressions that result depend on combinations of basic coefficients for Lorentz and CPT
violation, on trigonometric functions of various angles, on frequency-time products, on β⊕,
and on βs.

3. Signal Features

Satellite-based experiments offer accessibility to all the spatial components of the basic coef-
ficients for Lorentz and CPT violation. This eliminates a major constraint due to the fixed
rotation axis for Earth-based experiments, preventing sensitivity to various spatial compo-
nents. For instance, ground-based experiments sensitive to the laboratory-frame parameter
b̃w
3 would in turn be sensitive only to the nonrotating-frame components b̃w

X , b̃w
Y . They can

therefore bound only a limited subset of components of bw
µ , dw

µν , gw
λµν , Hw

µν . This limitation
would be overcome by a satellite platform. In the case of most satellites, the orbital axis
is tilted relative to the Earth’s rotation axis, and the orientation of this orbital axis pre-
cesses about the steady axis of the Earth. This precession makes the other spatial directions
accessible to satellite tests.

Another attractive feature of the satellite platform for experiments is the relatively short
orbital period. Since the satellite orbital period 2π/ωs for low-altitude satellites is much less
than a sidereal day, data can be collected in a substantially reduced period. In the case of
the ISS, the 92-minute orbital period translates into a data-collection period approximately
16 times shorter than on Earth, where the orbital period is about 24 hours. This could
contribute to better results since it would reduce the sensitivity loss due to clock instabilities
over time. One interesting advantage of this reduced experimental time is due to the fact
that the Earth’s velocity vector would remain essentially constant over the experimental

4
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duration. This makes it possible to analyze the leading-order relativistic effects due to the
speed β⊕ ' 1 × 10−4 of the Earth relative to the Sun. Such tests are not possible with
ground-based experiments, because they require several months of data, during which time
the velocity of the Earth changes significantly. The analysis would be considerably simplified
by the fact that the Earth could be regarded as an inertial reference frame. Direct extraction
of leading-order relativistic effects would be possible.

The observations above show that many types of Lorentz and CPT violation that are
unconstrained to date would be accessible in space-based experiments. As an example, con-
sider a clock-comparison experiment with sensitivity to the observable b̃w

3 for particle species
w. In the Sun-based frame and for each w, this observable is a linear combination of the
basic coefficients bw

µ , dw
µν , gw

λµν , Hw
µν for Lorentz violation, numbering 35 independent observ-

able components if the effect of field redefinitions is allowed for. Whereas a conventional
ground-based experiment is sensitive to 8 of these, the same type of experiment mounted
on a space platform would be sensitive to all 35. Another approach to overcoming con-
straints on accessible coefficients would be to construct a suitably-oriented rotating base for
a ground-based experiment. This option is not pursued here, since the current work is aimed
at understanding sensitivities of experiments planned for the ISS.

For ground-based experiments, some relativistic Lorentz and CPT coefficients are sup-
pressed by the boost factor of the Earth, β⊕. In comparison, space-based clock-comparison
experiments would also be sensitive to first-order relativistic effects proportional to the boost
factor of the satellite, βs. In Earth-based experiments, investigating the corresponding effects
of the lab motion relative to the Earth’s center would be impractical. Such effects would
also be further suppressed by Ω/ωs, which is about 6× 10−2 in the case of the ISS.

A somewhat unexpected effect exists among the order-βs corrections. It is found that in
space-based experiments a dipole shift can lead to a potentially detectable signal with fre-
quency 2ωs. This is not seen in the nonrelativistic analysis of Earth-based clock-comparison
experiments, where signals with the double frequency 2Ω occur only for quadrupole shifts.
To better understand this, consider the parameter b̃w

3 , which nonrelativistically is the third
component of a vector and would lead only to a signal with frequency ωs. This parameter
b̃w
3 contains the component d03, however, which in a relativistic approach behaves like a

two-tensor at leading order in βs, and would therefore lead to a signal at frequency 2ωs. We
give an example: when the Earth is near the northern-summer solstice, b̃w

3 in the Sun-based
frame has a double-frequency term that goes like cos(2ωs∆T ) with coefficient C2 containing
the following spatial components of dw

µν :

C2 ⊃ βs
m

8
[cos 2α(3 + cos 2ζ)(dw

XX − dw
Y Y )

+(1− cos 2ζ)(dw
XX + dw

Y Y − 2dw
ZZ)

−2 sin 2ζ(cos α (dw
Y Z + dw

ZY )− sin α (dw
ZX + dw

XZ))

+(3 + cos 2ζ) sin 2α (dw
XY + dw

Y X)]. (3)

This shows that all observable spatial components of dw
µνcould be accessed through appro-

priate monitoring of the 2ω frequency.
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3. Experiments on Earth Satellites

The ISS will house a number of high-precision clocks and other oscillators capable of testing
fundamental physics in the coming years. Instruments slated for installation include H
masers, laser-cooled Cs and Rb clocks, and superconducting microwave cavity oscillators [22,
23, 24, 25]. Among the experimental advantages of the ISS are the orbital parameters
βs ' 3 × 10−5 and ζ ' 52◦, which correspond to a speed and orbital plane outside the
scope of Earth-based experiments. In addition, experiments on the ISS would be conducted
in a microgravity environment with reduced environmental disturbances, and these features
are expected to lead to sensitivity gains compared with ground-based clocks. The analysis
presented in this proceedings is valid for tests with all these clocks, but not for the oscillators,
which are discussed elsewhere [13].

In our discussion, we consider a canonical configuration with a signal clock being com-
pared to a co-located reference clock. The signal clock is sensitive to leading-order Lorentz
and CPT violation, while the reference clock, for example an H maser tuned to its clock
transition |1, 0〉 → |0, 0〉, is insensitive to such effects.

Hydrogen Masers

A hydrogen maser operating on the transition |1,±1〉 → |1, 0〉 would be one possible signal
clock. A recent ground-based experiment used a double-resonance technique to monitor this
transition frequency [20], which is sensitive to the parameters b̃p

3 and b̃e
3 in the clock frame.

The sensitivity to relatively clean parameter combinations is a consequence of the simplicity
of the hydrogen system as compared with atoms such as Rb or Cs used in atomic clocks.
Mounting this experiment on the ISS would mean that an experimental run of only about a
day would suffice to obtain data roughly equivalent to four months of data taken on Earth
with a similar experiment on a fixed base. For both w = e and w = p, all spatial components
of bw

µ , mwdw
µν , mwgw

λµν , Hw
µν could be sampled by exploiting the orbital inclination (ζ 6= 0)

and by repeating the experiment at a later time when orbital precession corresponds to a
significantly different value of α. Making the assumption of a 500 µHz sensitivity, equalling
that attained in Earth-based experiments, several presently unbounded components would
be probed at the level of about 10−27 GeV, and others at about 10−23 GeV. We also estimate
that cleaner bounds on certain spatial components of mwdw

µν , mwgw
λµνat the level of about

10−23 GeV could be obtained by searching for a signal at the double frequency 2ωs. In
all, about 50 components of coefficients for Lorentz and CPT violation that are currently
unbounded could be tested at the Planck scale.

Cesium Clocks

In the case of a laser-cooled 133Cs clock, a reference frequency could be provided by the usual
clock transition |4, 0〉 → |3, 0〉, which is insensitive to Lorentz and CPT violation. A Zeeman
hyperfine transition such as |4, 4〉 → |4, 3〉 would be needed to provide a signal. Since 133Cs
has an unpaired electron, this atom has sensitivity to electron parameters similar to that of
the H maser. In the Schmidt model, the 133Cs nucleus is a proton with angular momentum
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7/2, giving sensitivity to all clock-frame parameters b̃p
3, c̃p

q , d̃p
3, g̃p

d, g̃p
q , and yielding both dipole

and quadrupole shifts. We note that components tested would include cp
µν . Repeating results

achieved in an Earth-based experiment would imply a sensitivity level of about 50 µHz [18]
on the |4, 4〉 → |4, 3〉 transition. A similar experiment on the ISS would potentially run for a
period reduced by a factor of 16. Furthermore, measurements of the double-frequency signal
2ωs would probe the spatial components of cp

µν at the 10−25 level, and other components at
about the 10−21 level. We estimate that about 60 components of coefficients for Lorentz and
CPT violation would be accessible at the Planck-scale.

Rubidium Clocks

Experiments with 87Rb are similar in many ways to ones with 133Cs. The clock transition
|2, 0〉 → |1, 0〉, is insensitive to Lorentz and CPT violation, and so is a suitable reference
signal. A Zeeman hyperfine transition such as |2, 1〉 → |2, 0〉 is a potential signal transition.
Like H and 133Cs, 87Rb has an unpaired electron, an is therefore sensitive to similar electron
parameters as discussed for those systems. The sensitivity to proton parameters is also
similar to that for 133Cs, up to factors of order unity, because the Schmidt nucleon for 87Rb
is a proton with angular momentum 3/2. An advantage from the theoretical viewpoint is the
magic neutron number, which aids in calculational reliability and leads to cleaner results [21].
A considerable range of Lorentz and CPT bounds could be envisaged for 87Rb with ideas
along these lines.

Other Spacecraft

Lorentz and CPT tests could be done with on a variety of space platforms. Missions where
the speeds of the craft with respect to the Sun are larger than the speed βs for Earth-
orbiting satellites are of particular interest. One possibility is the proposed SpaceTime [26]
experiment, which would attain β ' 10−3 on a trajectory sweeping from Jupiter in towards
the Sun. This mission will fly 111Cd+, 199Hg+, and 171Yb+ ion clocks in a craft rotating
several times per minute. This rotation rate would offer the possibility of gathering data for
a Lorentz and CPT test in as little as 15 minutes. The clock transitions |1, 0〉 → |0, 0〉 are
insensitive to Lorentz and CPT violation for all three clocks, and so could be used as reference
signals. Zeeman hyperfine transitions such as |1, 1〉 → |1, 0〉 are sensitive to Lorentz- and
CPT-violating effects in the standard-model extension and could provide signal clocks. In
the context of the Schmidt model, all three clocks are sensitive to the neutron parameters
b̃n
3 , d̃n

3 , g̃n
d in the clock frame. Such experiments would be of particular interest because none

of the above neutron parameters can be probed with the proposed ISS experiments. Several
tests for Lorentz and CPT violation would be possible by seeking variations in the signal-
clock outputs at the spacecraft rotation frequency ωST and also at 2ωST . Experiments in
this category would gain an order of magnitude advantage over Earth-based or Earth-orbit
experiments because of their larger boost factors.

4. Discussion

The standard-model extension is a microscopic theory predicting possible minuscule Lorentz-
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and CPT-violating effects in physical systems. Some of the experimental challenges facing
measurements of such effects can be overcome by mounting experiments on satellites orbiting
the Earth. In particular, atomic clocks planned for the International Space Station will be
able to exploit the relatively high rotation rates of the ISS as well as the relatively high
speed relative to the Earth to gain sensitivity to relativistic effects within the context of the
standard-model extension. Other experiments of interest in this context include satellite-
mounted microwave oscillators.
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9. V.A. Kostelecký, Phys. Rev. Lett. 80, 1818 (1998); Phys. Rev. D 61, 016002 (2000);
64, 076001 (2001).

10. OPAL Collaboration, R. Ackerstaff et al., Z. Phys. C 76, 401 (1997); DELPHI Collab-
oration, M. Feindt et al., preprint DELPHI 97-98 CONF 80 (1997); BELLE Collabo-
ration, K. Abe et al., Phys. Rev. Lett. 86, 3228 (2001).
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Kostelecký and R. Van Kooten, Phys. Rev. D 54, 5585 (1996); N. Isgur et al., Phys.
Lett. B 515, 333 (2001).

12. S.M. Carroll, G.B. Field, and R. Jackiw, Phys. Rev. D 41, 1231 (1990); R. Jackiw
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Precision Studies of Relativity in Electrodynamics 1
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In this contribution to the proceedings of the 2002 Workshop for Fundamental Physics in
Space, a discussion of recent work on astrophysical and laboratory tests of Lorentz symmetry
in electrodynamics is presented. Stringent constraints are placed on birefringence of light
emitted from galactic and extragalactic sources. The prospect of precision clock-comparison
experiments utilizing resonant cavities are considered.

1. Introduction

In the past, high-precision tests of the properties of light have played an important role in
the search for new physics. Historically, testing the Lorentz invariance of light has confirmed
special relativity to a high degree of precision [1, 2, 3]. Many of the traditional experiments
fit into one of two categories. Michelson-Morley experiments are designed to test rotational
invariance by searching for anisotropy in the speed of light. Kennedy-Thorndike experiments
test boost invariance by searching for variations in the speed of light due to changes in the
velocity of the laboratory. In this work, I review a recent study of extremely precise tests of
Lorentz symmetry in electrodynamics. This research was done in collaboration with Alan
Kostelecký. A detailed discussion can be found in Ref. [4].

In recent years, the possibility that Planck scale physics may reveal itself at low energies as
small Lorentz violations has lead to the development of a general Lorentz-violating standard-
model extension [5, 6, 7]. It consists of the minimal standard model plus small Lorentz- and
CPT-violating terms. The small violations may originate from nonzero vacuum expectation
values of Lorentz tensors in the underlying theory [8]. Lorentz violations of this type also
arise from noncommutative field theories [9].

The extension has provided a theoretical framework for a number of high precision tests
of Lorentz symmetry. To date, experiments involving hadrons [10, 11, 12, 13, 14, 15], protons
and neutrons [16, 17, 18, 19, 20], electrons [21, 22], photons [4, 23], and muons [24] have
been performed.

A Lorentz-violating extended electrodynamics can be extracted from the standard-model
extension [5]. In this work, we consider some experimental consequences of the extended
electrodynamics. The theory predicts novel features which lead to sensitive tests of Lorentz
symmetry. One unconventional property is the birefringence of light. The observed absence
of birefringence of light emitted from distant sources leads to tight bounds on some of the
coefficients for Lorentz violation [4, 23]. Some of these bounds are discussed in Sec. 3.

Another observable consequence of Lorentz violation is an orientation and velocity de-
pendence in the frequencies of resonant cavities. This dependence provides the basis for
future clock-comparison experiments sensitive to the photon-sector of the standard-model

1Presented at 2002 NASA/JPL Workshop for Fundamental Physics in Space, Dana Point, California,
May, 2002.
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extension. Past clock-comparison experiments have been used to place constraints on the
fermion sector [16, 17, 18, 19, 20]. Space-based versions of these experiments have recently
been considered for precision tests of Lorentz symmetry on board the International Space
Station (ISS) and other spacecraft [25]. Tests for Lorentz violation using resonant cavities
are considered in Sec. 4.

2. Extended Electrodynamics

The photon sector of the standard-model extension yields a Lorentz-violating electrody-
namics. It maintains the usual gauge invariance and is covariant under observer Lorentz
transformations. The Lorentz-violating electrodynamics includes both CPT-even and -odd
terms. However, the CPT-odd terms are theoretically undesirable since they may lead to in-
stabilities [5, 26]. Furthermore, these terms have been bounded experimentally to extremely
high precision using polarization measurements of distant radio galaxies [23]. Neglecting the
CPT-odd terms, we are left with a CPT-conserving electrodynamics including small Lorentz
violations.

The CPT-even lagrangian associated with the Lorentz-violating electrodynamics is [5]

L = −1
4
FµνF

µν − 1
4
(kF )κλµνF

κλF µν , (1)

where Fµν is the field strength, Fµν ≡ ∂µAν − ∂νAµ. The first term is the usual Maxwell
lagrangian. The second is an unconventional Lorentz-violating term. The coefficient for
Lorentz violation, (kF )κλµν , is real and comprised of 19 independent components. The ab-
sence of observed Lorentz violation requires (kF )κλµν to be small.

It is often convenient to work with the electric and magnetic fields, ~E and ~B, rather than
the vector potential Aµ. In terms of the usual electric and magnetic fields, the lagrangian
takes the form

L = 1
2
( ~E2 − ~B2) + 1

2
~E · (κDE) · ~E − 1

2
~B · (κHB) · ~B + ~E · (κDB) · ~B . (2)

The real 3× 3 matrices κDE, κHB and κDB contain the same information as (kF )κλµν . The
relationship between the two notations can be found in Ref. [4]. Taking κDE = κHB =

κDB = 0 in Eq. (2) results in the usual Maxwell lagrangian in terms of ~E and ~B. The
parity-even matrices, κDE and κHB, are symmetric, while the parity-odd matrix, κDB, has
both symmetric and antisymmetric parts. The matrices (κDE +κHB) and κDB are traceless.
These symmetries leave 11 parity-even and 8 parity-odd independent components.

The equations of motion for this lagrangian are

∂αFµ
α + (kF )µαβγ∂

αF βγ = 0 . (3)

These constitute modified source-free inhomogeneous Maxwell equations. The homogeneous
Maxwell equations,

∂µF̃
µν ≡ 1

2
εµνκλ∂µFκλ = 0 , (4)

remain unchanged.
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An interesting analogy exists between this theory and the usual situation in anisotropic
media. Define fields ~D and ~H by the six-dimensional matrix equation(

~D
~H

)
=

(
1 + κDE κDB

κHE 1 + κHB

)(
~E
~B

)
, (5)

with κHE = −(κDB)T . Then the modified Maxwell equations take the familiar form

~∇× ~H − ∂0
~D = 0 , ~∇ · ~D = 0 ,

~∇× ~E + ∂0
~B = 0 , ~∇ · ~B = 0 . (6)

As a result, the behavior of electromagnetic fields in the extended electrodynamics is very
similar to that of conventional fields in anisotropic media.

For the purpose of comparing the sensitivity of various experiments, it is convenient to
make the decomposition into four 3× 3 traceless matrices

(κ̃e+)jk = 1
2
(κDE + κHB)jk , (κ̃e−)jk = 1

2
(κDE − κHB)jk − 1

3
δjk(κDE)ll ,

(κ̃o+)jk = 1
2
(κDB + κHE)jk , (κ̃o−)jk = 1

2
(κDB − κHE)jk , (7)

and a single rotationally symmetric trace component

κ̃tr = 1
3
(κDE)ll . (8)

The matrices κ̃e+ and κ̃e− and the single coefficient κ̃tr contain the parity-even coefficients,
while the matrices κ̃o+ and κ̃o− contain the parity-odd. The matrix κ̃o+ is antisymmetric
while the other three are symmetric.

In terms of this decomposition, the lagrangian is

L = 1
2
[(1 + κ̃tr) ~E

2 − (1− κ̃tr) ~B
2] + 1

2
~E · (κ̃e+ + κ̃e−) · ~E

−1
2
~B · (κ̃e+ − κ̃e−) · ~B + ~E · (κ̃o+ + κ̃o−) · ~B . (9)

From the form of Eq. (9), it is evident that the component κ̃tr corresponds to shift in the
effective permittivity ε and effective permeability µ by (ε−1) = −(µ−1−1) = κ̃tr. Therefore,
the effect of a nonzero κ̃tr is an overall shift in the speed of light. This result generalizes to
the nine independent coefficients in κ̃tr, κ̃e− and κ̃o+. To leading order, these can be viewed
as a distortion of the spacetime metric of the form ηµν → ηµν + kµν , where kµν is small, real
and symmetric.

Small distortions of this type are normally unphysical, since they can be eliminated
through coordinate transformations and field redefinitions. However, in the context of the
full standard-model extension, eliminating these terms from the photon sector will alter other
sectors and the effects of such terms can not be removed. Thus, in experiments where the
properties of light are compared to the properties of other matter, these terms are relevant.
While in experiments sensitive to the properties of light only, these nine coefficients are
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not expected to appear. The resonant-cavity based experiments discussed in Sec. 4 fall
into the first category, while the astrophysical tests of Sec. 3 belong to the second. The
tests discussed discussed in Sec. 3 rely on measurements of birefringence, which in essence
compares the properties of light with different polarizations. Therefore, these tests are only
sensitive to the ten independent components of κ̃e+ and κ̃o−.

When reporting bounds on birefringence it is convenient to express them in terms of a
ten-dimensional vector ka containing the ten independent components of κ̃e+ and κ̃o− [4].
The relationship between κ̃e+, κ̃o− and ka is given by

(κ̃e+)jk = −

 −(k3 + k4) k5 k6

k5 k3 k7

k6 k7 k4

 ,

(κ̃o−)jk =

 2k2 −k9 k8

−k9 −2k1 k10

k8 k10 2(k1 − k2)

 . (10)

Bounds can then be expressed in terms of |ka| ≡
√
kaka, the magnitude of the vector ka.

3. Astrophysical Tests

In order to understand the effects of Lorentz violation on the propagation of light, we begin
by considering plane-wave solutions. Adopting the ansatz Fµν(x) = Fµνe

−ipαxα
, the modified

Maxwell equations yield an Ampère law given by the linear equation

(−δjkp2 − pjpk − 2(kF )jβγkpβpγ)E
k = 0 . (11)

Solving this equation determines the dispersion relation

p0
± = (1 + ρ± σ)|~p| , (12)

and electric field
~E± ∝ (sin ξ,±1− cos ξ, 0) +O(kF ) . (13)

To leading order, the quantities ρ, σ sin ξ and σ cos ξ are linear combinations of (kF )κλµν and
depend on v̂, the direction of propagation. One unconventional feature of these solutions is
the birefringence of light in the absence of matter. In the conventional case, this behavior is
commonly found in the presence of anisotropic media.

The general vacuum solution is a linear combination of the ~E+ and ~E−. For nonzero σ,
these solutions obey different dispersion relations. As a result, they propagate at slightly
different velocities. At leading order, the difference in the velocities is given by

∆v ≡ v+ − v− = 2σ . (14)

For light propagating over astrophysical distances, this tiny difference may become apparent.
As can be seen from the above solutions, birefringence depends on the linear combination

σ sin ξ and σ cos ξ. As expected, these only contain the ten independent coefficients which
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appear in κ̃e+ and κ̃o−. Expressions for σ sin ξ and σ cos ξ in terms of these ten independent
coefficients and the direction of propagation can be found in the literature [4].

Next, we consider two observable effects stemming from the birefringence. The first is
the difference in arrival time of two modes in unpolarized light. The second is the change in
polarization of polarized light emitted from distant sources.

3.1. Pulse Dispersion

For a source producing relatively unpolarized light, the components ~E± associated with each
mode will be comparable. For light produced at a given instant, the difference in velocity
will induce a difference in the observed arrival time of the two modes given by ∆t ' ∆vL,
where L is the distance to the source.

To make use of this idea, we consider sources that produce radiation with rapidly changing
time structure. Sources producing narrow pulses of radiation such as pulsars and gamma-ray
bursts are ideal. For sources of this type, the pulse can be regarded as the superposition
of two independent pulses, one for each mode. As the pulse propagates, the difference in
velocity will cause the two pulses to separate. A signal for Lorentz violation would manifest
itself as the observation of two sequential pulses of similar structure. The pulses would be
linearly polarized at mutually orthogonal polarization angles. This type of double pulse has
not yet been observed.

Single pulse measurements can be used to place bounds on Lorentz violation. Suppose
a source produces a pulse with a characteristic width ws. As the pulse propagates, the

Source L wo

GRB971214 [27, 28] 2.2 Gpc 50 s
GRB990123 [28, 29] 1.9 Gpc 100 s
GRB980329 [28, 30] 2.3 Gpc 50 s
GRB990510 [28, 31] 1.9 Gpc 100 s
GRB000301C [32, 33] 2.0 Gpc 10 s
PSRJ1959+2048 [34] 1.5 kpc 64 µs
PSRJ1939+2134 [34] 3.6 kpc 190 µs
PSRJ1824-2452 [34] 5.5 kpc 300 µs
PSRJ2129+1210E [34] 10.0 kpc 1.4 ms
PSRJ1748-2446A [34] 7.1 kpc 1.3 ms
PSRJ1312+1810 [34] 19.0 kpc 4.4 ms
PSRJ0613-0200 [34] 2.2 kpc 1.4 ms
PSRJ1045-4509 [34] 3.2 kpc 2.2 ms
PSRJ0534+2200 [34, 35] 2.0 kpc 10 µs
PSRJ1939+2134 [34, 36] 3.6 kpc 5 µs

Table 1: Source data for velocity constraints.
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two modes spread apart and the width of the pulse will increase. The observed width can
be estimated as wo ' ws + ∆t. Therefore, observations of wo place conservative bounds
on ∆t ' ∆vL ' 2σL. The resulting bound on σ constrains the ten-dimensional parameter
space of κ̃e+ and κ̃o−. Since a single source constrains only one degree of freedom, a minimum
of ten sources located at different positions on the sky are required to fully constrain the ten
coefficients.

Table 1 lists a sample of 16 sources consisting of gamma-ray bursts and pulsars, as well as
their distances and pulse widths. Each width places a bound on σ for that particular source.
Combining these bounds using a method described in Ref. [4] constrains the ten-dimensional
parameter space. At the 90% confidence level, we obtain a bound of |ka| < 3× 10−16 on the
coefficients for Lorentz violation.

3.2. Spectropolarimetry

In this subsection, we consider the effect of Lorentz violation on polarized light. Decomposing
a general electric field into its birefringent components, we write

~E(x) = ( ~E+e
−ip0

+t + ~E−e
−ip0

−t)ei~p·~x . (15)

Each of the components propagates with different phase velocity. A change in the relative
phase results from this difference. The shift in relative phase is given by

∆φ = (p0
+ − p0

−)t ' 4πσL/λ , (16)

where L is the distance to the source and λ is the wavelength of the light. The change in
relative phase results in a change in the polarization as the radiation propagates.

The L/λ dependence suggests the effect is larger for more distant sources and shorter
wavelengths. Recent spectropolarimetry of distant galaxies at wavelengths ranging from
infrared to ultraviolet has made it possible to achieve values of L/λ greater than 1031. Mea-
sured polarization parameters are typically order 1. Therefore, we expect an experimental
sensitivity of 10−31 or better to components of (kF )κλµν .

In general, plane waves are elliptically polarized. The polarization ellipse can be pa-
rameterized with angles ψ, which characterizes the orientation of the ellipse, and χ =
± arctan minor axis

major axis
, which describes the shape of the ellipse and helicity of the wave. The

phase change, ∆φ, results in a change in both ψ and χ. However, measurements of χ are
not commonly found in the literature. Focusing our attention on ψ, we seek an expression
for δψ = ψ − ψ0, the difference between ψ at two wavelengths, λ and λ0. We find [4]

δψ = 1
2
tan−1 sin ξ̃ cos ζ0 + cos ξ̃ sin ζ0 cos(δφ− φ0)

cos ξ̃ cos ζ0 − sin ξ̃ sin ζ0 cos(δφ− φ0)
, (17)

where we have defined δφ = 4πσ(L/λ− L/λ0), ξ̃ = ξ − 2ψ0 and φ0 ≡ tan−1(tan 2χ0/ sin ξ̃),
ζ0 ≡ cos−1(cos 2χ0 cos ξ̃). The polarization at λ0 is given by the polarization angles ψ0 and
χ0.
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Source Leff (Gpc) 1030Leff/λ log10 σ

IC 5063 [37] 0.04 0.56 - 2.8 -30.8
3A 0557-383 [38] 0.12 2.2 - 8.5 -31.2
IRAS 18325-5925 [38] 0.07 1.0 - 4.9 -31.0
IRAS 19580-1818 [38] 0.14 1.8 - 9.3 -31.0
3C 324 [39] 2.44 82 - 180 -32.3
3C 256 [40] 3.04 110 - 220 -32.4
3C 356 [41] 2.30 78 - 170 -32.3
F J084044.5+363328 [42] 2.49 88 - 170 -32.4
F J155633.8+351758 [42] 2.75 99 - 160 -32.4
3CR 68.1 [43] 2.48 84 - 180 -32.4
QSO J2359-1241 [44] 2.01 110 - 120 -31.2
3C 234 [45] 0.61 55 - 81 -31.7
4C 40.36 [46] 3.35 120 - 260 -32.4
4C 48.48 [46] 3.40 120 - 260 -32.4
IAU 0211-122 [46] 3.40 120 - 260 -32.4
IAU 0828+193 [46] 3.53 130 - 270 -32.4

Table 2: Source data for polarization constraints.

The idea is to fit existing spectropolarimetric data to Eq. (17). Under the reasonable
assumption that the polarization of the light when emitted is relatively constant over the
relevant wavelengths, any measured wavelength dependence in the polarization is due to
Lorentz violation.

Table 2 lists 16 sources with published polarimetric data with wavelengths ranging from
400 to 2200 nm. In this table, the effective distance Leff is listed which takes cosmological
redshift of the light into account. Using a fitting procedure described in Ref. [4], we obtain
a bound on σ for each source. Combining these bounds in the same manner as in the
pulse-dispersion case, a constraint on the ten-dimensional parameter space is found. At the
90% confidence level, we obtain a bound of |ka| < 2 × 10−32 on the coefficients for Lorentz
violation responsible for birefringence.

4. Resonant Cavities

Clock-comparison experiments have proved to be some of the most sensitive tests of Lorentz
symmetry [16, 17, 18, 19, 20]. The frequencies of these clocks are typically atomic Zeeman
transitions. Lorentz violation causes these frequencies to vary with changes in orientation
or velocity of the clock. Experiments searching for a variation due to the rotational motion
of the Earth have placed stringent bounds on Lorentz violation in the fermion sectors of the
standard-model extension.

Modern versions of the Michelson-Morley and Kennedy-Thorndike experiments utilize
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resonating electromagnetic cavities [47, 48, 49]. Resonant cavities serve as clocks in clock-
comparison experiments which are sensitive to Lorentz violation in the photon sector. These
experiments search for a variation in the resonant frequency of a cavity as its orientation or
velocity changes. For a typical Earth-based experiment, the variation in resonant frequency
occurs at harmonics of the Earth’s sidereal frequency, ω⊕ ' 2π/(23 hr 56 min). Due to the
orbital motion of the Earth, the variation may also contain annual components.

The ISS and other spacecraft provide interesting platforms for future clock-comparison
experiments. The orbital properties of the spacecraft may result in radically different be-
havior. For example, the orbital period of the ISS is about 92 min. The comparable period
for an Earth-based experiment is the Earth’s sidereal period. This suggests a significant
reduction is data-acquisition time for a space-based experiment compared to its Earth-based
counterpart.

We begin our discussion by considering the effects of Lorentz violation on the resonant
frequency of cavities. We then consider two classes of cavities, optical and microwave, which
are currently under development for precision tests of relativity.

4.1 General Considerations

The quantity of interest is the fractional resonant-frequency shift δν/ν. Consider a harmonic

system satisfying the Maxwell equations (6). Suppose ~E0, ~B0, ~D0 and ~H0 are the conventional

solutions with resonant angular frequency ω0. Let ~E, ~B, ~D and ~H be solutions for nonzero
(kF )κλµν with angular frequency ω. Manipulating the Maxwell equations for both sets of
fields, we obtain the expression

δν

ν
=
ω − ω0

ω0

= −
(∫

V
d3x( ~E∗

0 · ~D + ~H∗
0 · ~B)

)−1

×
∫

V
d3x

(
~E∗

0 · ~D − ~D∗
0 · ~E − ~B∗

0 · ~H + ~H∗
0 · ~B

−iω−1
0
~∇ · ( ~H∗

0 × ~E − ~E∗
0 × ~H)

)
, (18)

where the integrals are over the volume V of the cavity.
Note that the divergence term in Eq. (18) results in a surface integral over the boundary

of V . In many situations, we can neglect such boundary terms. For example, neglecting
Lorentz violations in other sectors, the fields vanish inside a perfect conductor, by usual
arguments. Idealizing the walls of the cavity as a perfect conductor, the Faraday equation
~∇ × ~E + ∂0

~B = 0, implies the tangential component of ~E vanishes at the surface. In this
scenario, the divergence term in Eq. (18) is zero.

Using Eq. (18), we can find the frequency shift perturbatively in terms of the conventional

solutions. For a cavity void of matter, we have ~E0 = ~D0 and ~B0 = ~H0. The constitutive
relations (5) give the approximate equalities

~D − ~E ' κDE · ~E0 + κDB · ~B0 , ~H − ~B ' κHE · ~E0 + κHB · ~B0 . (19)

With these relations and the vanishing of the boundary term, the leading order fractional
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frequency shift is

δν

ν
= − 1

4〈U〉

∫
V
d3x

(
~E∗

0 · κDE · ~E0 − ~B∗
0 · κHB · ~B0 + 2Re ( ~E∗

0 · κDB · ~B0)
)
, (20)

where 〈U〉 =
∫
V d

3x (| ~E0|2 + | ~B0|2)/4 is the time-averaged energy stored in the unperturbed
cavity. Note that δν/ν is real, indicating that the Q factor of the cavity remains unaffected
by Lorentz violation at leading order.

The integrals in Eq. (20) are most readily carried out in a frame at rest with respect
to the laboratory. Since the laboratory frame is not inertial in general, the laboratory-
frame coefficients (κDE)jk

lab, (κDB)jk
lab and (κHB)jk

lab are not constant. However, using observer
covariance, the laboratory-frame coefficients can be related to the coefficients in an inertial
frame through observer Lorentz transformations.

There are many logical candidates for an inertial frame. For our purposes, a Sun-centered
celestial equatorial frame will suffice. The coefficients in this frame (κDE)JK , (κHB)JK and
(κDB)JK can be regarded as constant. The relative smallness of the velocity of the Earth in
this frame, β⊕ ≈ 10−4, implies it is usually sufficient to expand the transformation in powers
of the velocity β. To order β, the relation between the laboratory-frame coefficients and the
Sun-frame coefficients is given by

(κDE)jk
lab = T jkJK

0 (κDE)JK − T
(jk)JK
1 (κDB)JK ,

(κHB)jk
lab = T jkJK

0 (κHB)JK − T
(jk)KJ
1 (κDB)JK ,

(κDB)jk
lab = T jkJK

0 (κDB)JK + T kjJK
1 (κDE)JK + T jkJK

1 (κHB)JK , (21)

with T jkJK
0 ≡ RjJRkK and T jkJK

1 ≡ RjPRkJεKPQβQ, where RjJ is the rotation from the Sun
frame to the laboratory frame, and βQ is the velocity of the laboratory in the Sun frame.
The tensor T0 is a rotation, while T1 is a leading-order boost contribution. Although the
terms involving T1 are suppressed by β, they access distinct combinations of coefficients and
can introduce different time dependence, which may lead to fundamentally different tests.

4.2 Optical Cavities

Recent examples of modern Michelson-Morley and Kennedy-Thorndike experiments based
on optical cavities include Refs. [47, 48, 49]. The basic setup of these experiments consists
of a pair of stabilized lasers. One laser is stabilized by an optical cavity. The second laser is
stabilized by a molecular transition which in the classical analysis is assumed to be insensitive
to Lorentz violations. This laser serves as a reference frequency. The beat frequency of the
combined signal is analyzed for a variation due to a change in the orientation or velocity of
the cavity.

The sensitivities achieved in these experiments are typically on the order of 10−13 to
δν/ν. Analyzing these experiments in the context of the extended electrodynamics should
therefore yield bounds on components of (kF )κλµν at the level of 10−13.

Regarding these cavities as two parallel planar reflecting surface, the usual solutions can
be approximated as standing waves. In a reference frame at rest in the laboratory, we take

~E0(x) = ~E0 cos(ω0N̂ · ~x+ φ)e−iω0t ,
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~B0(x) = iN̂ × ~E0 sin(ω0N̂ · ~x+ φ)e−iω0t , (22)

where N̂ is a unit vector pointing along the length of the cavity, φ is a phase, and ~E0 is a
vector perpendicular to N̂ that specifies the polarization. The resonant frequencies of the
conventional solutions are given by ω0 = πm/l, where m is an integer and l is the separation
of the reflecting surfaces.

Substituting this solution into Eq. (20) yields the fractional frequency shift:

δν

ν
= − 1

2| ~E0|2
[ ~E∗

0 · (κDE)lab · ~E0 − (N̂ × ~E∗
0) · (κHB)lab · (N̂ × ~E0)] . (23)

This result depends on the orientation of the cavity in the laboratory and the polarization of
the light. Transforming the laboratory-frame coefficients to the Sun-frame, using Eq. (21),
introduces variations in the frequency shift due to the motion of the lab.

Consider a Earth-based laboratory. The transformation (21) includes variations at the
Earth’s sidereal and orbital frequencies. The orbital frequency components are a result
of a boost, and are therefore suppressed relative to the purely rotational contributions.
Consequently, the resonant frequency fluctuates at ω⊕ and the second harmonic 2ω⊕, along
with suppressed oscillations associated with the annual variation in the Earth’s velocity.

Different experimental configurations result in different sensitivities to the coefficients
(kF )κλµν , and can result in different frequencies in frequencies in the variations of δν/ν.

As an example, consider a cavity positioned horizontally in the laboratory with vertical
polarization. Let θ be an angle specifying the orientation of the cavity in the horizontal
plane. The frequency shift takes the form

δν

ν
= A+B sin 2θ + C cos 2θ, (24)

where

A = A0 + A1 sinω⊕T⊕ + A2 cosω⊕T⊕ + A3 sin 2ω⊕T⊕ + A4 cos 2ω⊕T⊕ ,

B = B0 +B1 sinω⊕T⊕ +B2 cosω⊕T⊕ +B3 sin 2ω⊕T⊕ +B4 cos 2ω⊕T⊕ ,

C = C0 + C1 sinω⊕T⊕ + C2 cosω⊕T⊕ + C3 sin 2ω⊕T⊕ + C4 cos 2ω⊕T⊕ . (25)

The quantities A0,1,2,3,4, B0,1,2,3,4, and C0,1,2,3,4 are linear in the coefficients for Lorentz vio-
lation and depend on the latitude of the laboratory.

From Eq. (24), we see that one possible strategy for searches for Lorentz-violation would
be to rapidly rotate the cavity in the laboratory and search for variations at the harmonics
of the cavity rotation frequency. This is the method used in the experiment of Brillet and
Hall [47]. It has been estimated that their analysis constrains one combination of coefficients
to about a part in 1015 [4].

Hills and Hall performed an experiment with the cavity fixed in the laboratory [48]. A
bound is placed on the sidereal variation on the order of 10−13. We see from Eqs. (24) and
(25) that this constrains some combination of the coefficients A1, A2, B1, B2, C1, and C2.
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A similar experiment has recently been performed by Braxmaier et al. [49]. Their analysis
focuses on variations due to the orbital motion of the Earth. In the present context, this
corresponds to β suppressed terms arising from the leading order boost contributions in the
transformation (21). They achieve fractional-frequency sensitivity of 4.8±5.3×10−12, which
leads to an estimated constraint on a combination of coefficients on the order of 10−8.

It should be noted that β suppressed terms involve parity-odd coefficients, while the
unsuppressed terms are only sensitive to parity-even coefficients. Therefore, consideration
of these terms seems worthwhile even at reduced sensitivity.

The above experiments place loose constraint on three combinations of coefficients. It is
likely that reanalyzing these experiments in terms of the standard-model extension would
place constraints on more combinations at similar levels.

4.3 Microwave Cavities

Microwave-cavity oscillators are among the most stable clocks. Cavities constructed of super-
conducting niobium have achieved frequency stabilities of 3× 10−16. In an effort to perform
improved tests of relativity, superconducting microwave oscillators are being developed by
the SUMO project for use on upcoming ISS missions [50].

Equation (20) can be applied to cavities of any geometry and operated in any mode.
Here we consider a cylindrical cavity of circular cross section, operated in the fundamental
TM010 mode. The integrals in Eq. (20) are easily carried out in a frame fixed to the cavity
with its 3 axis along the symmetry axis. In terms of coefficients in the cavity-fixed frame,
the fractional frequency shift is

δν

ν
= −1

2
(κDE)33

cav + 1
4
[(κHB)11

cav + (κHB)22
cav] . (26)

It is not difficult to generalize this expression to an arbitrary laboratory frame in which the
cavities symmetry axis points in a direction specified by a unit vector N̂ . The result is

δν

ν
= 1

4
(κHB)jj

lab − 1
4
N̂ jN̂k[2(κDE)jk

lab + (κHB)jk
lab] . (27)

Using transformation (21) we express this in terms of the Sun-frame coefficients. We find

δν

ν
= −1

4
N̂ jN̂kRjJRkK(κ̃e′)

JK − 1
2
(δjk + N̂ jN̂k)RjJRkKεJPQβQ(κ̃o′)

KP − κ̃tr , (28)

where for convenience we define the linear combinations

(κ̃e′)
JK = 3(κ̃e+)JK + (κ̃e−)JK , (κ̃o′)

JK = 3(κ̃o−)JK + (κ̃o+)JK . (29)

The matrix combinations κ̃e′ and κ̃o′ are traceless. The first contains five linearly independent
combinations of the 11 parity-even coefficients for Lorentz violation, while κ̃o′ contains all
eight parity-odd coefficients.

As an example, consider two identical cavities, operated in the above mode, oriented at
right angles to each other on the ISS. In general, the resonant frequency of the cavities will

11

Donald Strayer
3-26



vary at the first and second harmonics of the stations orbital frequency ωs. A search for
Lorentz violation could be performed by looking for this variation in the beat frequency of
the two cavities. The variation takes the general form

νbeat

ν
≡ δν1

ν
− δν2

ν
= As sinωsTs +Ac cosωsTs + Bs sin 2ωsTs + Bc cos 2ωsTs + C, (30)

where As, Ac, Bs, and Bc are four linear combinations of the coefficients for Lorentz violation.
These combinations depend on the orientations of the cavity pair and on the orientation of
the orbital plane with respect to the Sun-centered frame. The precession of the ISS orbit
slowly changes the four combinations, allowing access to more coefficients. Typically, these
are rather cumbersome [4] and are omitted here.

The sensitivity to the coefficients (kf )κλµν strongly depends on the orientations of the

cavities. It can be shown that orienting a cavity with N̂ in the orbital plane maximizes the
sensitivity to the second harmonics, at leading order in β. Orienting a cavity so that N̂ is
45◦ out of the plane maximizes sensitivity to the first harmonics. A sensible configuration
might have one cavity in the orbital plane and one 45◦ out of it.

There are many variations of the above experiment that could be performed. Earth-based
experiments similar to those discussed Sec. 4.2 could also be performed using microwave
cavities. Operating in different modes or using cavities filled with matter changes the com-
binations of coefficients to which the experiment is sensitive. It is also possible to compare
the resonant frequency of a cavity to a reference clock other than another cavity oscillator.
For example, the reference clock could be a hydrogen maser or atomic clock, which could
conveniently be operated on a transition known to be insensitive to Lorentz violation [25].

With current stabilities, it seems likely that microwave-cavity oscillators could access
coefficients that are currently unmeasured, at levels comparable to the those of optical-cavity
experiments and perhaps at the 10−16 level.

5. Summary

In this work, we considered the experimental consequences of a Lorentz-violating electrody-
namics which arises from a Lorentz- and CPT-violating standard-model extension. We found

Astrophysical Tests Cavity Tests

Coeff. No. Velocity Polarization Optical Microwave
κ̃e+ 5 -16 -32 ? -
κ̃e− 5 n/a n/a ? -
κ̃o+ 3 n/a n/a ? -
κ̃o− 5 -16 -32 ? -
κ̃tr 1 n/a n/a - -

Table 3: Existing constraints.
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that astrophysical bounds on birefringence lead to stringent constraints on ten coefficients
for Lorentz violation. Access to the remaining coefficients may be accomplished through
clock-comparison tests involving resonant cavities.

We summarize the current constraints in Table 3. The 19 coefficients (kF )κλµν are repre-
sented by the matrices κ̃e+, κ̃e−, κ̃o+, κ̃o−, κ̃tr defined in Eq. (7). The number of independent
components in each matrix is shown in the second column. The third and fourth column
give the order of magnitude of astrophysical bounds. Laboratory experiments with optical
and microwave cavities can in principle access all the coefficients. The matrices for which
a few components are probably constrained by the optical cavity experiments discussed in
Sec. 4.1 are indicated by the symbol ? in the table. To date, no measurements of Lorentz
violation using microwave cavities have been reported.

We conclude by remarking that even though the ten coefficients in κ̃e+ and κ̃o− are
tightly constrained by astrophysical measurements, confirming these in laboratory experi-
ments provides an important check because the systematics in the two types of experiments
are significantly different. Furthermore, cavity experiments access currently unexplored re-
gions in parameter space, and they offer the possibility of discovering physics beyond the
standard model.
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13. V.A. Kostelecký, Phys. Rev. Lett. 80, 1818 (1998); Phys. Rev. D 61, 016002 (2000);
64, 076001 (2001).
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STEP Technology Status

Glen Sapilewski
STEP Program, Hansen Labs, Stanford University

Stanford, CA  94305-4085

Significant technical progress has been made this past year advancing key technologies
needed to implement STEP.  Together with our collaborators in Europe and industry, we
have continued to advance the development of the STEP Instrument (Differential
Accelerometer, Quartz Block, and Probe) and the STEP Dewar.

We have manufactured for the first time a thin film magnetic bearing (with
superconducting cables) as specified by the flight DifferentialAccelerometer design.  A
prototype accelerometer with magnetic bearing is currently under test in our
Accelerometer Test Facility (ATF).  The ATF suspends a test mass at 4 K by a 1.5-meter
long fiber.  The torsion mode has a 100 second period, comparable to the stiffness
required by the magnetic bearing in orbit.  We will present prototype accelerometer and
ATF status.

STEP Instrument and Dewar design has progressed significantly in two ways:  (1) Probe
design led by the University of Birmingham with Rutherford Appleton Laboratory, and in
collaboration with Stanford University with Lockheed Martin; and (2) Dewar design with
aerogel led by Lockheed Martin in collaboration with Stanford, JPL, and the University
of Trento.  The Dewar  thermal model incorporating the Probe design predicts a Dewar
lifetime of 8.2 months (requirement is 6 months).
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The objective of ISLES (Inverse-Square Law Experiment in Space) is to perform a null 
test of Newton’s law on ISS with a resolution of one part in 105 at ranges from 100 µm to 
1 mm.  ISLES will be sensitive enough to detect axions with the strongest allowed cou-
pling and test the string-theory prediction with R ≥ 5 µm.  The experiment will be cooled 
to ≤ 2 K in LTMPF, which permits superconducting magnetic levitation in micro-g, al-
lowing very soft, low-loss suspension of the test masses.  The low magnetic damping, 
combined with a low-noise SQUID, leads to extremely low intrinsic noise in the detector.  
To minimize Newtonian errors, ISLES employs a near null source, a circular disk of large 
diameter-to-thickness ratio.  Two test masses, also disk-shaped, are suspended on the two 
sides of the source mass at a distance of 100 µm.  The signal is detected by a supercon-
ducting differential accelerometer, which is a highly sensitive gravity sensor. 

      

1. Objective of ISLES 
The Newtonian inverse-square (1/r2) law of gravity is a cornerstone of General Relativity 

(GR).  Its validity has been impressively demonstrated by astronomical observations in the solar 
system, exceeding a level of one part in 108 at 107 ~ 109 km.  In the wake of interests in search-
ing for a “ fifth force,” the past two decades has seen increased activities in testing the 1/r2 law on 
the laboratory and geological scales.   The experimental limit at 1 cm ~ 10 km now stands at one 
part in 103 ~ 104.  However, due to difficulties associated with designing sensitive short-range 
experiments, the range below 1 mm has been left largely unexplored (Adelberger et al., 1991).   

Figure 1 shows the existing 
limit for the 1/r2 law at ranges 
below 1 mm and the sensitivity 
of ISLES,  plotted as a function 
of range λ, where the total po-
tential is written as 

.)e1()( /- λα r

r
GMrV +−=   (1) 

Violations predicted by various 
theories are also indicated.  The 
expected resolution of ISLES is 
|α | =  1 × 10−5 at λ = 100 µm ~ 
1 mm and |α | =  1 × 10−2 at λ = 
10 µm.  At 100 µm, this repre-
sents an improvement over the 
existing limits (Hoyle et al., 
2001) by over six orders of 
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Figure 1.  Sensitivity of ISLES versus the existing limit. 
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magnitude.  ISLES reaches four orders of magnitude beyond the level aimed at by Long et al. 
(1999) in their laboratory experiment.  The improvement at ≤ 100 µm is greater.  The ISLES is 
capable of detecting the axion with highest allowed coupling (θ = 3 × 10−10) and will test a string 
theory prediction with R2 ≥ 5 µm.  ISLES is based on the superconducting gravity gradiometer 
(SGG) technology fully developed at the University of Maryland (Moody et al., 2002). 

2. Scientific Value of Short-Range 1/r2 Law Test 
Test of General Relativity.  Existence of a short-range mass-mass interaction implies a vio-

lation of the 1/r2 law, a cornerstone of GR.  Such a force may or may not have composition de-
pendence.  Therefore, the 1/r2 law could be violated even when the Equivalence Principle (EP) 
holds rigorously.  So ISLES will complement STEP (Satellite Test of the Equivalence Principle), 
which aims at testing the EP to one part in 1018 at the opposite end of the range, λ ≥ 104 km 

Test of string theories.  String theories can be consistently formulated only in nine spatial 
dimensions.  Because the space we observe is three-dimensional, the extra dimensions must be 
hidden.  If there are n compact dimensions with radii R1, R2, …  Rn, Gauss’s law implies that the 
Planck mass MPl is related to a fundamental scale M* by 

 ....21
2
*

2
n

n
Pl RRRMM +≈  (2) 

As we probe distances shorter than one of the radii Ri, a new dimension opens up and changes 
the r dependence of the gravitational force law. 

One theoretically well-motivated value for M* is 1 TeV, which solves the gauge hierarchy 
problem; namely, gravity is so weak compared to the other forces.  For two large dimensions of 
similar size, one obtains R1 ≈ R2 ≈ 1 mm (Arkani-Hamed et al., 1999).  Cosmological and astro-
physical constraints give a bound M* > 100 TeV (Cullen and Perelstein, 1999; Hall and Smith, 
1999), with the most stringent bound, M* > 1700 TeV, coming from the evolution of neutron 
stars (Hannestad and Raffelt, 2002).  This most stringent bound corresponds to R1 ≈ R2 < 40 nm.  
While this is beyond the reach of ISLES, there are cosmological assumptions going into these 
bounds, and a null result would supply independent confirmation of the model being tested.  

Search for the axion.  The Standard Model of particle physics successfully accounts for all 
existing particle data; however, it has one serious blemish: the strong CP problem.  Strong inter-
actions are such that parity (P), time reversal (T), and charge conjugation (C) symmetries are 
automatically conserved in perturbation theory.  However, non-perturbative effects induce viola-
tions of P and CP (parameterized by a dimensionless angle θ), but no such violations have been 
observed in strong interactions.  Peccei and Quinn (1977) developed an attractive resolution of 
this problem.  One ramification of their theory is the existence of a new light-mass boson, the ax-
ion (Weinberg, 1978; Wilczek, 1978).  The axion mediates a short-range mass-mass interaction.  
The experimental upper bound θ ≤ 3 × 10–10 corresponds to a violation of the 1/r2 law at the level 
of |α |  ≈ 10–4 at λ = 1 mm, which is within reach for ISLES.  

The axion could also solve the major open question in astrophysics: the composition of dark 
matter.  Galactic rotation curves and inflation theory require that there should be more mass in 
the universe than is observed.  Although neutrino mass, MACHOs (MAssive Compact Halo Ob-
jects), and many hypothetical particles have been offered as explanations, the solution remains 
elusive.  The axion is one of the strongest candidates for the cold dark matter (Turner, 1990). 
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3. Principle of Experiment  
Newtonian null source.  To maximize the masses 

that can be brought to 100 µm from each other, flat disk 
geometry is used for both the source and test masses, as 
is done by Long et al. (1999).  An infinite plane slab is a 
Newtonian null source.  We approximate this by using a 
circular disk of sufficiently large diameter.  Figure 2 
shows the configuration of the source and test masses 
with associated coils and capacitor plates.   

Levitated test masses.  Two disk-shaped supercon-
ducting test masses are suspended on two sides of the 
source mass and are coupled magnetically to form a dif-
ferential accelerometer.  The motions induced in the test 
masses are detected by sensing coils (LS1 and LS1). 

Under 1 g, it is difficult to suspend two flat disks on 
two sides of the source mass at such proximity without 
significantly modifying the geometry and stiffening the 
differential mode, thus degrading the resolution of the 
experiment.  In micro-g, each test mass can be suspended 
by applying only minute forces from a pancake coil (LS1 
or LS2) and a small ring coil (LR1 or LR2) coupled to a nar-
row slanted rim of the test mass with negligible mass. 

Second harmonic detection.  As the source mass is 
driven at frequency fS along the symmetry axis, the first-
order Newtonian fields arising from the finite diameter of the source mass are canceled upon dif-
ferential measurement, leaving only a second-order error at 2fS.  By symmetry, the Yukawa sig-
nal also appears at 2fS.  The second harmonic detection, combined with the common-mode rejec-
tion ratio (CMRR) of the detector, reduces source-detector vibration coupling by over 300 dB. 

Expected signal.  The design allows a 
source displacement of ±50 µm.  The dif-
ferential acceleration signals expected from 
the Newtonian (with 10% correction) and 
Yukawa forces with |α |  = 10−5 and λ = 100 
µm are plotted in Figure 3 as a function of 
the source mass position.  The rms ampli-
tude of the Yukawa signal, corresponding 
to a ±50-µm displacement, is 8.5 × 10−12 α 
m s-2.  The rms amplitude of the Newtonian 
term, arising from the finite diameter of the 
source mass, is 1.0 × 10−16 m s-2 before 
compensation.  The Newtonian error will 
be computed and removed to ≤ 10%, which 
is straightforward.   
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Figure 2.  Configuration of the source 
and test masses. 
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Figure 3.  Newtonian and Yukawa signals versus 
source position. 
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Need for low gravity.  Sensitive experiments searching for weak forces invariably require 
soft suspension for the measurement degree of freedom.  A promising soft suspension is super-
conducting magnetic levitation.  Levitation in 1 g, however, requires a large magnetic field, 
which tends to couple to the measurement axis through metrology errors and thus stiffens the 
mode.  The high field also makes suspension more dissipative.  Fields close to the critical field 
(Hc) of the superconductor must be used to levitate the masses in 1 g.  Surface impurities will re-
duce Hc locally.  The field will also be stronger near sharp edges.  These effects cause the mag-
netic fields to be trapped, which contributes to damping of the motions through flux creep. 

The situation improves dramatically in space.  The g-level is reduced by five to six orders of 
magnitude, so the test masses can be supported with weaker magnetic springs, permitting the re-
alization of both the lowest resonance frequency and lowest dissipation.  Our calculation shows 
that, even on such a relatively noisy platform as the ISS, the space experiment will have at least 
100 times better resolution over the ground experiment. 

4. Experimental Hardware 
Overview of the apparatus.  Figure 4 shows a cross-sectional view of the apparatus.  The 

entire housing is fabricated from niobium (Nb).  The source mass is made out of tantalum (Ta), 
which closely matches Nb in thermal contraction.  It is suspended by cantilever springs at the 
edge and driven magnetically.  A thin Nb shield provides electrostatic and magnetic shielding 
between the source and each test mass.  The 
test masses are suspended and aligned by 
magnetic fields from various coils.  Two 
auxiliary three-axis superconducting accel-
erometers are mounted on two sides of the 
housing to provide linear and angular accel-
eration signals. 

The entire assembly weighs 6.0 kg and 
fits within the 20-cm diameter envelope of 
the LTMPF instrument well.  The masses 
need not be caged during launch and ISS 
maneuvers since their sway space will be 
limited to ±50 µm by mechanical stops.   

The ISLES cryogenic and electrical re-
quirements will be met with the standard 
LTMPF provision with minor improve-
ments.  The entire apparatus is fastened to 
the second-stage thermal platform of the 
Cryo Insert of LTMPF, which will be stabi-
lized to 5 µK (Figure 5).  The orientation of 
the detector was chosen such that its sensi-
tive axis is aligned with the pitch (y) axis of 
the ISS when LTMPF is mounted on JEM-
EF.  This orientation minimizes the centrifu-
gal acceleration noise. 
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Figure 4.  Cross section of the ISLES apparatus. 
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Source and test masses.  The source mass is a disk 2.0 mm thick by 140 mm in diameter, 
with mass M = 510 g.  The source mass, cantilever springs, and rim are machined out of a single 
plate of Ta.  Ta is chosen for its high density (16.6 g cm−3), which increases the signal, and its 
relatively high Hc.  Each test mass is a Nb disk 0.25 mm thick by 63 mm in diameter, with a rim 
0.25 mm thick by 2.0 mm wide, which has 5° slant from the axis.  The mass of each test mass is 
m = 7.5 g.  The test masses are separated by a baseline l = 2.45 mm.  The position of each test 
mass is measured by a capacitor plate located near its center (see Figure 2).  

The equilibrium spacing between the source and each test mass is 100 µm.  They are shielded 
from each other by means of a 12.5-µm thick Nb shield, located at 25 µm from the surface of the 
test mass.  The source mass is driven magnetically by coupling a small ac current to a supercon-
ducting circuit carrying a large persistent current.   

Superconducting circuitry and setup procedure.  Schematics of the superconducting cir-
cuits for the detector are shown in Figure 6.  These circuits are similar to the standard differenc-
ing circuit used in the SGG (Moody et al., 2002).  The test masses are suspended radially by 
storing persistent currents IR1 and IR2 in ring coils LR1 and LR2 and the pancake coils, as shown in 
Figure 6(a).  Due to the slanted rim of the test masses, currents IR1 and IR2 will exert an axially 
outward force on the test masses.  This force is balanced by the axially inward forces provided 
by the currents in the sensing, alignment, and feedback circuits, shown in Figures 6(b), (c), and 
(d).  The suspension is stable for all degrees of freedom, except for roll about the sensitive axes.   

The scale factors of the component accelerometers are matched by adjusting currents IS1 and 
IS1 in pancake coils LS1 and LS1, as shown in Figure 6(b).  The SQUID measures the differential 
acceleration aD, or gravity gradient, along the y-axis.  To align an individual test mass parallel to 
its shield and to also align its axis parallel to the axis of the other mass, two alignment circuits 

 
Figure 5.  The ISP mounted on the Cryo Insert. 
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are provided for each 
test mass, one per 
degree of freedom.  
Figure 6(c) shows the 
alignment circuit of 
test mass 1 about the 
x-axis.  This align-
ment is accomplished 
by tuning currents 
Iθ11 and Iθ12 in re-
motely coupled pan-
cake coils Lθ11 and 
Lθ12 (see Figure 2).   

The balance pro-
cedure matches the 
linear components of 
the scale factors but 
does not completely 
match the nonlinear-
ity.  This mismatched 
nonlinearity is trou-
blesome since it 
down-converts the 
wideband acceleration noise to the signal frequency.  A standard approach to suppressing the 
nonlinearity is applying a negative feedback to the test masses, which actively stiffens the mode.  
The feedback circuit is given in Figure 6(d).  The common-mode (CM) and differential-mode 
(DM) outputs iFC and iFD are fed back to the test masses.  The CM output is derived from the 
auxiliary accelerometers.  Currents IF1 and IF2 are adjusted to null the effect of the CM feedback 
on the DM output. 

Coarse and fine heat-switches.  Due to the high vibration levels of the ISS (> 10−6 m s−2 
Hz−1/2), a special provision must be made to be able to fine control the magnetic fluxes trapped in 
various superconducting loops.  Coarse heat-switches, denoted by Hij’s, warm up a short length 
of the Nb wire to a resistance R ≈ 1 mΩ, resulting in an L/R time of about 10 ms. These coarse 
switches are used to store currents initially.  Fine heat-switches, denoted by hij’s, couple a low-
resistance path with Rδ ≈ 0.1 µΩ to the circuit, resulting in a time constant of about 100 s.  With 
1-ms time resolution of the heat-switch, fluxes can then be adjusted to one part in 105.  This fine 
control of the trapped currents gives the ability to match the scale factors to 10−5 and to align the 
sensitive axes to 10−5 rad, resulting in an initial CMRR of 105 in all three linear degrees of free-
dom. 

Heat-switch HSD in Figure 6(b) is turned on to protect the SQUID from a current surge when-
ever a current is adjusted in the sensing circuit.  The output heat-switches, HiC’s and HiD’s, are 
turned on to passively damp the corresponding modes, in the event the test masses are excited.  

Auxiliary superconducting accelerometers.  Figure 4 shows two three-axis auxiliary su-
perconducting accelerometers mounted symmetrically on two sides of the housing.  Each test 
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Figure 6.  Superconducting circuits for the detector. 
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mass is a hollow 20-g Nb cube, 
suspended and sensed by Nb 
pancake coils on its six faces.  
The suspension is stable in all 
degrees of freedom.  The ac-
celerometers are coupled to 
SQUIDs, two SQUIDs per de-
gree of freedom, to measure 
three linear (ai) and two angu-
lar (αi) acceleration compo-
nents, as well as a gravity gra-
dient component (Γij). 

Figure 7 shows the superconducting circuit for the y-axis of the auxiliary accelerometer.  The 
four pancake coils separated along the y-axis are combined to sum and difference the signals.  
The CM and DM signals correspond to ay and Γyy, respectively.  The gravity gradient signal is 
used to monitor and remove gravitational disturbances from the detector.  The pancake coils 
separated along the x- and z-axes are combined in similar circuits to measure ax and αz, and az 
and αx, respectively.  The only component that is not measured is αy, which is not needed for er-
ror compensation.  

The intrinsic noise of the accelerometers at f = 0.02 Hz are Sa
1/2( f ) ≈ 1 × 10–11 m s–2 Hz–1/2, 

and Sα
1/2( f ) ≈ 3 × 10–11 rad s–2 Hz–1/2, and SΓ

1/2( f ) ≈ 3 × 10–11 s–2 Hz–1/2 = 0.03 E Hz–1/2, where 1 
E (Eö tvö s) = 10–9 s–2 is a unit of gravity gradient.   

5. Dynamic Noise Rejection 
Error compensation.  Linear and angular accelerations are rejected to 10−5 and 10−4 m, re-

spectively, by adjusting persistent currents in the sensing and alignment circuits.  To improve the 
acceleration rejection further, we apply error compensation technique that has been demonstrated 
with our SGG (Moody et al., 2002).  The linear and angular accelerations of the platform, meas-
ured by the auxiliary accelerometers, are multiplied by the predetermined error coefficients and 
subtracted from the detector output.  By applying the compensation factor 103 demonstrated in 
the laboratory, we should be able to achieve a net CMRR of 108 for linear acceleration and a net 
error coefficient of 10−7 m for angular acceleration.   

To determine the dynamic error coefficients, accelerations in all degrees of freedom must be 
provided.  If active vibration isolation is implemented, a six-axis shaker will be built into the iso-
lation system, which can be used to apply a sinusoidal acceleration signal in each degree of free-
dom.  Without the vibration isolation system, we will use the ISS vibration noise itself to shake 
the detector.  The accelerations will be random and cross-correlated between degrees of freedom.  
However, we can apply a well-established procedure in electrical engineering for determining 
the transfer functions for a multiple-input system using noise alone (Bendat and Piersol, 1971).   

Due to the short but finite baseline (l = 2.45 mm), the 1/r2 law detector is a gravity gradiom-
eter, which is sensitive to attitude modulation of Earth’s gravity gradient, gravity noise from ISS, 
and centrifugal acceleration.  Fortunately, the auxiliary gradiometer measures exactly the same 
gradient noise, except for gravity disturbances from nearby objects (< 1 m).  This noise can thus 
be removed from the detector output by applying the above correlation method.   
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Figure 7.  Superconducting circuit for the y-axis of the coupled 
three-axis auxiliary accelerometers. 
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Vibration isola-
tion (option).  With 
the residual accelera-
tion errors compen-
sated, the most im-
portant dynamic error 
source is the nonlin-
earity of the scale 
factors.  Vibration 
isolation of the detector is an alternative way of suppressing the nonlinearity noise. 

  An active vibration isolation system, combined with a single-stage passive isolation, was 
studied for LTMPF by Ball Aerospace & Technologies Corp. (BATC).  As LTMPF is designed 
presently, the sway space is limited to ±3 mm.  This constrains our ability to extend the isolation 
to below 0.1 Hz.  Eight D-strut isolators were used to attach the facility frame to Payload Inter-
face Unit (PIU).  These isolators provide a 40-dB/decade attenuation from 1 to 200 Hz.  Each 
isolator is also equipped with a voice-coil actuator to provide active isolation.  The outputs of the 
superconducting accelerometers are fed back to these actuators.   

The result is shown in Figure 8.  The first is the passive isolation provided by the eight D-
strut isolators.  The first active system shown employs only control over the translation degrees 
of freedom.  The second active system employs closed loop control over all six degrees of free-
dom.  The isolation system provides only a 10-dB isolation at 0.05 Hz.  The main advantage 
comes from the reduction of high-frequency noise, which reduces the nonlinearity noise.   

6. Error Budget 
Metrology errors.  Table 1 lists the metrology errors estimated using a numerical model.  

The effects from the finite diameter of the source and the dynamic mass of the suspension 
springs are corrected to 10% and 20%, respectively.  Linear taper and linear density variation of 
the source produce second order errors, which become negligible.  The test masses tend to rotate 
slowly about the sensitive axis, further averaging out the asymmetry about the axis.  Hence only 
the radial taper and the radial density variation are important.  Due to the null nature of the 
source, test mass metrology is not important, except for the extended rim.  The rim dimension is 
corrected to 2.5 µm.  The requirements on radial positioning of the test masses are greatly re-
laxed by the cylindrical symmetry.  The total 
metrology error is 1.5 × 10−17 m s-2.  

The dimensional tolerances are achievable 
using hand lapping of the parts.  Fabrication of 
the test masses with a slanted rim will require a 
special procedure.  One possibility is machin-
ing the entire structure in a single piece by 
combining regular machining with electric dis-
charge machining (EDM).  Another possibility 
is machining the disk and the rim as separate 
pieces and then diffusion-bonding them in a 
vacuum oven.   

 
Figure 8.  Frequency response of the vibration isolation system for y-axis. 

Source Allowance  Error  
(× 10–18 m s–2) 

Baseline 25 µm 1.0 
Source mass    
   Finite diameter 10% 12 
   Suspension spring 20% 2.4 
   Radial taper 2.5 µm 7.8 
   Radial density                                                  

variation 
10−4 0.2 

Test masses    
   Rim dimension 2.5 µm 1.7 
Total error  15 

Table 1.  Metrology errors 
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Intrinsic instrument noise.  The intrinsic power spectral density of a superconducting dif-
ferential accelerometer can be written (Chan and Paik, 1987; Moody et al., 2002) as 
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where m is the mass of each test mass, ωD  = 2πfD  and QD  are the DM resonance frequency and 
quality factor, β is the electromechanical energy coupling coefficient, η is the electrical energy 
coupling coefficient of the SQUID, and EA( f ) is the input energy resolution of the SQUID.   

Equation (3) shows that fD  is a critical parameter for the intrinsic noise.  The micro-g on ISS, 
in principle, allows a suspension 106 times softer than on the ground, which corresponds to fD  < 
0.01 Hz.  On the other hand, the differential accelerometer’s response to platform vibration must 
be minimized to reduce errors due to electric charge on the test mass, patch-effect fields, self-
gravity of the ISS, and most importantly the nonlinearity of the scale factors.  Ideally, one would 
like to increase fC as much as possible, while keeping fD low.  Unfortunately, the nonlinearity of 
the coils couples a fraction of the CM stiffness to DM, providing a practical limit: fC/fD ≤ 4.  This 
forces us to make a compromise.  The test masses must remain free before a feedback loop is 
closed either to the test masses or to the isolator, since otherwise there will be no signal to feed 
back.  We need to keep the test mass excursion to ≤ 10 µm.  This requires fC ≥ 0.2 Hz and fD ≥ 
0.05 Hz.  This represents a stiffness reduction by 104 from the ground experiment. 

Analysis of ISLES circuits shows that I11 = I21 ≈ 4.7 mA and I13 = I23 ≈ 47 mA gives fD = 
0.05 Hz and fC = 0.2 Hz.  For feedback operation of the detector, this choice of mode frequen-
cies, with signal frequency f = 0.02 Hz, minimizes the total dynamic noise.  The radial transla-
tional mode frequency is found to be ~ 0.06 Hz.  The test masses are free to roll about their axes.  
Rolling will tend to average out azimuthal asymmetries of the source and the test masses.  If ac-
tive vibration isolation is provided, the optimum frequencies shift slightly to f = 0.05 Hz, fD = 0.1 
Hz and fC = 0.4 Hz.  We compute the intrinsic noise for these two sets of frequencies.   

The design values for the other parameters of Eq. (3) are: T = 2 K, m = 7.5 g, QD = 106, β = η 
= 0.5, and EA( f ) = 10–30 (1 + 0.1 Hz/f ) J Hz-1.  The SQUID energy resolution corresponds to the 
flux noise, 5 µΦ0 Hz–1/2, originally specified in LTMPF Science Requirement Document.  This 
coincides with the performance typically obtained from commercially available dc SQUIDs.  We 
assume that this SQUID noise level can be achieved for ISLES.  With the above parameter val-
ues, we find Sa

1/2( f ) = 7.0 × 10–14 m s–2 Hz–1/2 for f = 0.02 Hz and fD = 0.05 Hz (for feedback), 
and Sa

1/2( f ) = 10.8 × 10–14 m s–2 Hz–1/2 for f = 0.05 Hz and fD = 0.1 Hz (for vibration isolation). 

Acceleration Noise.  The upper curve of Figure 9 shows the y-axis linear acceleration spec-
trum measured by a SAMS II accelerometer in the US Lab on a typical day.  The lower curve is 
the acceleration spectrum with active isolation, which was generated by filtering the acceleration 
spectrum with the response function given in Figure 8.  The noise is quietest at ~ 0.01 Hz, with a 
value of 3 × 10–6 m s–2 Hz–1/2.  This noise will be reduced to 3 × 10–14 m s–2 Hz–1/2 by the net 
CMRR of 108.  The angular acceleration noise is reduced to 2 × 10–14 m s–2 Hz–1/2 by the error 
coefficient of 10−7 m.  The centrifugal acceleration noise is negligible. 

Using the nonlinearity coefficient measured in our SGG (Moody et al., 2002), we estimate 
the nonlinearity-induced noise as plotted in Figure 10.  The upper curve is the noise without ac-
tive isolation or feedback, which is 103 times higher than the intrinsic noise of the instrument at 
0.01 Hz.  The middle curve shows the result of applying the active isolation.  At 0.01 Hz, the 
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nonlinearity noise is at 1 × 10–13 m s–2 Hz–1/2.  
The lower curve shows the nonlinearity noise 
expected in the detector under a feedback 
control, which stiffens CM to 10 Hz.  

Assuming that the above acceleration 
noise represents the actual noise that will be 
experienced by the ISLES detector, we find a 
total acceleration noise to be 6.3 × 10–14 m s–2 
Hz–1/2 at f = 0.02 Hz for feedback option and 
5.9 × 10–14 m s–2 Hz–1/2 at f = 0.05 Hz for vi-
bration isolation option. 

Gravity noise.  Helium tide is absent due 
to the Earth-fixed orientation of the ISS.  He-
lium sloshing is of minor concern since it is 
expected to occur at a sufficiently low fre-
quency, ~2.5 mHz.  The gravity gradiometer 
along the x-axis will be used to monitor 
gravitational disturbance of the experiment.  
The gravity noise from modulation of the 
Earth’s gravity gradient and ISS self-gravity, 
including the activities of astronauts, will be 
taken out, along with the centrifugal accelera-
tion, by the error compensation scheme.   

Magnetic crosstalk.  Trapped flux is not 
of concern as long as the flux is strongly 
pinned.  Flux creep will be minimized by 
cooling and performing the experiment in a 
low magnetic field.  For this purpose, 
LTMPF is equipped with a Cryoperm shield.  
Flux motion from the incidence of charged 
particles in orbit can be reduced by material 
processing and the insertion of flux dams.   

With the high magnetic field required to drive the source mass, magnetic crosstalk between 
the source and the detector is a very important potential source of error.  To solve this problem, 
the entire housing is machined out of Nb and a Nb shield is provided between the source and 
each test mass.  High-purity Nb will be used.  The Nb will be heat-treated to bring the material 
very close to a type-I superconductor, thus minimizing flux penetration.  The superconducting 
shield is expected to provide over 200 dB isolation (Rigby et al., 1990).  This isolation, com-
bined with 60 dB rejection from the second harmonic detection, should provide the required iso-
lation between the source drive signal and the test masses in excess of 260 dB. 

Electric charge effects.  Levitated test masses in orbit will accumulate electric charge from 
cosmic rays and from high-energy protons, as the spacecraft traverses through the South Atlantic 
Anomaly.  Scaling from the charge computed for STEP test masses (Blaser et al., 1996), we find 
that the total charge accumulated in each ISLES test mass over the entire duration of the experi-
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Figure 9.  Linear acceleration along y-axis: actual 
(upper) and with active isolation (lower). 
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Figure 10.  Nonlinearity error for y-axis: actual 
(upper), with active isolation (middle), and with 
feedback (lower). 
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ment will be Q ≈ 1.5 × 10–13 C.  In deriving this number, we used a charge trapping efficiency 
10% that of STEP to account for the difference in shape: the ISLES test masses are extremely 
thin (250 µm) and do not trap charge as efficiently as the much thicker STEP test masses.   

The charge trapped in the test mass will induce image charges on the neighboring coils and 
superconducting ground planes.  Most of the trapped charge will appear on the surfaces of the 
test masses facing the shields since the gap is smallest there (~ 20 µm).  This will generate a dif-
ferential force Q2/ε0A, where ε0 is the permittivity of vacuum and A is the area of the test mass.  
The force results in the maximum differential displacement at the end of the mission: 

 .m1071 9
2

0

2

max,
−×≈=

D
D mA

Qx
ωε

 (4) 

A differential displacement affects the CMRR through mismatches in the coil areas, gaps, and 
currents.  With the initial coil gap of 10–4 m and a mismatch of 10%, we find that the CMRR is 
affected by 7 ppm at most.  This should allow the passive CMRR to remain at the required level 
of 105 throughout the mission.  So ISLES does not require a discharging system.  To make sure 
that the trapped charge remains below the threshold, the charge will be measured after each 30-
day data run and the test masses will be discharged, if necessary, by simply pushing it against the 
shields.  This may necessitate a recalibration of the detector. 

The energetic charged particles will also impart momentum and cause heating of the test 
masses.  These effects were found to be less important than the electrostatic force for STEP.  In 
addition, patch-effect potential will be modulated as charge builds up in the test masses, causing 
a time-varying acceleration.  These ac disturbances occur mostly outside the signal band and 
therefore are averaged out.  The Casimir force is not of concern for the present experiment where 
the gap between the masses is >> 1 µm (Lamoreaux, 1997).  

Temperature noise.  The modulation of the penetration depth of a superconductor with tem-
perature and residual thermal expansion coefficients for different materials give rise to tempera-
ture sensitivity in a superconducting accelerometer.  These occur through temperature gradients 
as well as mismatches in the accelerometers (Chan and Paik, 1987).  From our experience with 
the SGG, however, this noise is expected to be negligible with the platform temperature stabi-
lized to 5 µK.   

Total errors.  Table 2 combines all the errors for the two scenarios: one with feedback and 
the other with vibration isolation.  To reduce the 
random noise to the levels listed, a 90-day inte-
gration was assumed.  The vibration isolation 
approach does not reduce the total noise, but is 
worth considering because it greatly simplifies 
the detector design and operation.  It allows the 
use of a slightly stiffer suspension, which will 
reduce the disturbances from the trapped charge.  
Therefore, we plan to have a trade study at the 
beginning of the flight definition phase, compar-
ing the risks and benefits, and the costs of im-
plementing these approaches. 

Error Source Error (× 10–18 m s–2) 
 w/ feedback w/ isolation 
Metrology 15 15 
Random (90 days) (90 days) 
Intrinsic 25 39 
ISS vibration 23 21 
Gravity noise < 1 < 1 
Vibration coupling < 1 < 1 
Magnetic coupling < 10 < 10 
Electric charge < 10 < 10 
Other (30% margin) 33 41 
Total 52 64 

Table 2.  Error budget. 
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7. Expected Resolution  
By equating the noise with the expected Yukawa signal, we compute the minimum detectable 

|α | .  Figure 1 shows the 1σ error plotted as a function of λ for the feedback approach.  The case 
with active isolation is very similar.  The best resolution of ISLES is |α |  = 1 × 10–5 at λ = 100 
µm ~ 1 mm.  ISLES will test the 1/r2 law with a resolution of 10–2 at λ = 10 µm.  Figure 1 shows 
that the string theory predicted violation with R2 ≥ 5 µm will be detected and axions with 
strength 10 ~100 times below the maximum will be detected. 

ISLES will use the SGG technology fully developed at the University of Maryland.  The 
SGG has been used to perform a null test of Newton’s law at a sensitivity ten times beyond that 
of the other methods at 1-meter distance (Moody and Paik, 1993).  The instrument proposed for 
ISLES is very similar to the existing SGG.  The experimental procedure and error analysis are 
also similar to those in the meter-scale 1/r2 law test, already carried out with the SGG.   

For the modest cost of the ISS experiment, the scientific gain from ISLES is tremendous.  
ISLES constitutes a new test of General Relativity in the hitherto largely untested range and the 
first ever test of a prediction of string theory.  The experiment will push the frontiers of searching 
for new weak forces by several orders of magnitude, with a potential to discover new particles. 

The resolution of the experiment could be improved by reducing several errors.  The metrol-
ogy and density errors could be reduced by fabricating the source mass out of a crystalline mate-
rial such as sapphire or quartz, which can be optically polished.  The masses would then be 
coated with a thin layer of Nb to allow levitation.  The intrinsic noise of the detector could be re-
duced by using a lower noise SQUID (as has already been developed for GP-B).  The vibration 
noise can be improved by a few orders of magnitude by going to a free-flyer, which will allow 
much softer suspension of the test masses and thus higher instrument sensitivity.  With these im-
provements, the resolution could be improved to |α |  ≤ 10–6. 
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Abstract

This paper presents the highlights of progress made in the flight definition of an
experiment to test the Equivalence Principle in free-fall inside a co-moving vacuum
chamber/cryostat.  The chamber is part of the falling capsule which is released from a
balloon at stratospheric altitude.  The paper focuses on the study of key noise sources
such as gravity gradients generated by distributed (capsule) and concentrated (equipment)
masses near the sensor.  The results have led to the choice of the capsule mass
distribution and to the determination of requirements of relative motion between the
sensor and the capsule.  Furthermore, an analysis of the gravity gradient of the Earth as a
function of the orientation of the sensor has defined the constraint on sensor attitude
motion and centering errors between the centers of mass of the sensing masses.

Introduction

The scientific goal of the experiment is to test the equality of gravitational and inertial
mass (i.e., to test the Principle of Equivalence) by measuring the independence of the rate
of fall of bodies from the composition of the falling body.  The measurement is
accomplished by measuring the relative displacement (or equivalently acceleration) of
two falling bodies of different materials which are the proof masses of a differential
accelerometer.  The goal of the experiment is to measure the Eötvös ratio δg/g
(differential acceleration/common acceleration) with an accuracy goal of a few parts in
1015.  The estimated accuracy is about two orders of magnitude better than the present
state of the arti,ii.  The experiment is a null experiment in which a result different from
zero will indicate a violation of the Equivalence Principle.

In summary, the experiment to be designed is aimed at taking differential acceleration
measurements with a high-sensitivity detector (the sensor) during free fall conditions
lasting up to 30 s in a disturbance-free acceleration environment. During the
measurement phase, the sensor free falls inside a few-meter-long (in the vertical
direction) evacuated capsule that is falling simultaneously in the rarefied atmosphere
after release from a helium balloon flying at a stratospheric altitudeiii.

By falling in vacuum inside a co-moving capsule, the noise acceleration level can be kept
to a negligible level while the signal strength in free fall is increased by 3 orders of
magnitude with respect to the signals available to experiments conducted on the ground.
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The free fall technique, therefore, combines some of the advantages of the space-based
tests with the accessibility and reusability of ground experiments.

Fig. 1  Schematic of capsule with acceleration detector attached (before release)
to the spin up system

Experiment Highlights

The experiment starts with the loading of the sensor into the vacuum chamber/cryostat
about 2 weeks before the planned launch.  This operation is then followed by the
pumping down of the chamber and the refrigeration of the sensor.  After connecting the
capsule to the gondola and the balloon, the balloon is launched.  The estimated time to
reach altitude is about 3 hours.  Upon reaching altitude, the attitude of the capsule is
stabilized along the local vertical by the leveling mechanism on the gondola, the sensor is
spun up, and the dynamics of the system is analyzed.  When the dynamics is within the
acceptable bounds, the capsule is released from the gondola and the sensor is released
from the top of the chamber/cryostat immediately afterwards.  The science data is taken
during the free-fall phase in which the sensor spans the length of the chamber.  Shortly
after the sensor has reached the bottom of the capsule, a blut (first stage of the
deceleration system) is released and, when the speed has decreased below the required
value, the parachute is deployed.  The chamber is vented before the capsule hits the
surface/water and the locator beacon is turned on.

The differential accelerometer (sensor) detects the relative displacement, through
capacitive pickups, of two sensing masses of different materials.  The two sensing masses

Sensor

Cryostat

Spin system

Sensitive axis
(rotates with sensor)
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have their centers of mass (CM) as close as possible in order to reduce the effect of
gravity gradients and rotational dynamics.

Fig. 2  Schematic of instrument package with exploded view of sensing masses

The differential accelerometer is slowly spun before release to modulate the signal
during the measurement phase.  The spin also moves some components of gravity
gradients to a frequency higher than the signal frequency as shown in the next section.
Figure 2 shows an exploded view of the instrument package (that hosts the sensor) with
the two sensing masses in open view. The sensor is discussed in greater details in
Refs. iv v.  In this paper we will concentrate on the analysis of key perturbations affecting
the measurement. Specifically, the effects of the gravity gradients produced by the
distributed mass of the capsule, concentrated masses on board the capsule and the Earth’s
mass on the experiment design.

Analysis of Gravity Gradients

The gravity gradients generated by the distributed mass of the chamber/cryostat and
their effects on the differential measurement are analyzed in the following for a generic
position of the detector inside the capsule and a generic orientation of its spin axis with
respect to the gradient field.  For a mass distributed with cylindrical symmetry, the
resultant gravitational acceleration has two components: az= acceleration component
along the cylinder axis; and ar = acceleration component along the cylinder radius.

x

z

y

         

θ

y

x
(r,θ)

Fig. 3  Reference frames for gravity gradient analysis

Mass 1 Mass 2

1 capacitive
pickup
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After erecting a Cartesian reference system xyz as depicted in Figure 3, the
components of the gravity gradient tensor are computed according to the following
transformation formulas:

θθθ dsinrdrdx ⋅⋅−⋅= )()cos(
θθθ drdrsindy ⋅⋅+⋅= )cos()( (1)

θθθ dsinadada rrx ⋅⋅−⋅= )()cos(

θθθ dadasinda rry ⋅⋅+⋅= )cos()(

Setting θ = 0 and utilizing the cylindrical symmetry:

rx aa =

0=ya

and the gravity gradient components in cylindrical coordinates are

rrxx aa =

0=xya

raa ryy /= (2)

rzzxxz aaa ==

0== zyyz aa

in which the subscripts indicate spatial derivatives.  The gravity gradient tensor takes the
form:

Γ = 
















zzrz

r

rzrr
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ra

aa

0

0/0

0

(3)

As a result of the Laplace equation, the trace of the gravity gradient tensor is equal to
zero, that is

a a r arr r zz+ + =/ 0 (4)

In the singular case of r = 0 the limit calculation yields:

Γ(r = 0)  = 
















− rr

rr

rr

a

a

a

200

00

00

(5)
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Gravity gradient matrix of a rotating body

In general a gravity gradient matrix has the form:

Γ

Γ Γ Γ

Γ Γ Γ

Γ Γ Γ

  =

















xx xy xz

yx yy yz

zx yz zz

(6)

The rotated matrix Γ’ after a θ = ωt rotation is:

Γ Γ©  = R RT
θ θ (7)

where Rθ is the rotation matrix and Rθ
T its transpose.

After a rotation about an axis (i.e., the x axis), the rotated matrix has four components
modulated at ω, four components modulated at 2ω and one component that is not
modulated.

The ω-modulated components of the transformed matrix (with superscript ‘) are:

′ = ′ = ⋅ + ⋅Γ Γ Γ Γ12 21 xz xyt tsin( ) cos( )ω ω (8.1)

′ = ′ = ⋅ − ⋅Γ Γ Γ Γ13 31 xz xyt tcos( ) sin( )ω ω (8.2)

where the transformed axes are called x’ = 1, y’ = 2, z’ = 3.  In summary, the off-diagonal
components Γ’12 = Γ’21 and Γ’13 = Γ’31 of the gravity gradient matrix produce components
that are modulated at the rotation frequency.

Gravity gradient matrix projected onto sensor body axes

In a general case the body reference frame placed at the CM of a sensing mass of the
detector can be identified with respect to the cryostat frame by means of 3 successive
rotations as follows:

1 - Rotation α around z axis (azimuth rotation)
2 - Rotation β around the transformed y’ axis (elevation rotation)
3 - Rotation ωt around the transformed x’’ axis (spin rotation)

In the computation of gravity gradients, these rotations can either be rotations of the
sensing mass with respect to the cryostat or, equivalently, rotations of the cryostat with
respect to the sensing mass.  In the former case, and solely for the reason of pointing out
a typical geometrical situation, the first and second rotations could, for example, be
caused by the detector dynamics during free-fall (e.g., precession of its body axes) while
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the third rotation is the ωt rotation of the detector about its longitudinal axis aimed at
modulating the signal.

Clearly, we are mostly concerned about the components of the gravity gradient matrix
that contain a frequency ω equal to the modulating frequency of the signal.  We can
choose the body axis y’ = 2 to coincide with the sensitive axis of the accelerometer and,
consequently, we are only concerned with the component Γ’21 of eqn. (8.1).  In general,
the moduli of the two components Γ’12 and Γ’13 are the same and they can be written as
follows:

χ = +Γ Γxy xz
2 2  (9)

After rotating the original matrix by two rotations α and β (where α is the azimuth of the
spin axis with respect to the radial direction and β is the elevation with respect to the
capsule equatorial plane) the expressions of Γ xy and Γ xz in eqn. (9) are as follows

Γxy k k= −1 2 2sin( )sin( ) cos( )sin( )β α β α (10.1)

Γxz k k k= + +3 1 2
22 2 2sin( ) cos( )cos( ) sin( )cos ( )β α β β α (10.2)

k axz1 = (10.3)

k a axx yy2
1
2

= −( ) (10.4)

k a ayy zz3
1
2

= −( ) (10.5)

where the aij are the matrix components before the rotations are carried out.  In the case of
a body with cylindrical symmetry and for cylindrical coordinates, eqns. (2) yield axx = arr,
ayy = ar/r, azz = azz, axz = arz while the other components are null.

Using numerical analysis of eqns. (10) and taking into account that inside a cylinder
k2 is always at least one order of magnitude less than k1 and k3, we find that the maximum
value for χ occurs for α = 0.  This result implies that the maximum disturbance of the
capsule gravity field on the differential accelerometer is produced when the capsule
moves radially with respect to the sensor (see Figure 4) in such a way that the spin axis is
oriented along the radius of the cylinder through the sensor and the capsule has been
displaced radially with respect to the sensor (e.g., by wind shear).

Donald Strayer
3-50



7

spin axis

Figure 4  Geometry of sensor and capsule (viewed from the top) for strongest gravity
gradient affecting the measurement

On the opposite end, if the motion of the capsule is such as to keep α close to 90°, that is
the spin axis is orthogonal to the radial, the disturbance is minimum.  Nevertheless, since
the translational motion of the external capsule is not predictable nor controlled, the worst
condition is analyzed by setting α equal to zero and varying the angle β, so that eqns. (9)
and (10) yield:

χ β β= + +( )sin( ) cos( )k k k3 2 12 2 (11)

Equation (11) summarizes the disturbances induced by the cryostat mass modulated
at the measurement frequency.  This equation is important for the cryostat/capsule design.

Capsule gravity gradients

The gravity gradient terms (which are in turn combinations of gravity gradient tensor
components) have a complex distribution inside the cryostat.  During free fall, the
capsule/cryostat moves with respect to the sensor because of the external forces produced
by the rarefied atmosphere.  The sensor spans the top 1-m vertical distance inside the
cryostat in 20-25 s for a capsule ballistic coefficient in the range of interest of 6000-
10000 kg/m2.  Under worst-case conditions of wind shear the side motion relative to the
capsule is limited to a cylindrical area of 0.1-m radius centered about the longitudinal
axis of the cryostat.  An additional contribution to the side motion is due to the verticality
error of the capsule during the fall.

A Matlab routine was developed to compute the gravity gradients inside a cylindrical
cryostat with caps of different shapes. The routine creates a two-dimensional mesh of
point masses uniformly distributed on the average surface of the cylinder and its caps.  In
the case of flat caps the mass distribution results in a closed cylindrical surface of height
H and diameter D.  The gravity gradient field has been mapped on the z-x plane where x
coincides with the cylinder’s radial and z with the longitudinal axis, as far as s = 10 cm
from the top and bottom and c = 20 cm from the side walls.

The point of release P lies on the symmetry axis of the cylinder and at d = 40 cm from the
top.  A worst-case relative trajectory of the sensor inside the cryostat was computed (see
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Ref. v) for our current best estimate of the
capsule parameters as follows: ballistic
coefficient (at low speed) = 10000 kg/m2, a
release altitude of 40 km, a wind shear of
0.005 s-1 (i.e., 10 knots/km) and a maximum
verticality error of the capsule of 5° which has
been conservatively assumed to produce a
constant, lateral displacement of the sensor in
the same direction of the wind shear. This
worst-case trajectory is superimposed to the
contour plots of the relevant gravity gradient
terms k1, k2 and k3 shown in Figs. 5(a)-5(c).
The detector senses the gravity gradient

components as a differential acceleration if there is a centering error of the two proof
masses.  The gravity gradient terms shown in Figs. 5 are those modulated at the sensor
rotation frequency ω and, consequently, they are the most damaging gravity gradient
components.

(a)

H

D

P

 s

 c

d
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(b)

(c)

Figure 5  Contour plots of gravity gradient terms for a cryostat with flat caps and H = 2.3
m, D = 1.2 m and total mass = 500 kg: (a) k1; (b) k2 and (c) k3.[see eqns. (10)]

Donald Strayer
3-53



10

Fig. 6  Values of k1,k2,k3 vs. time along the fall trajectory
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Figure 6 shows that the quantity k3 is relatively larger than k1 and k2.  Consequently,
eqn. (11) poses a limit for the angle β that defines the capsule attitude with respect to the
spin axis of the sensor.  After neglecting the much smaller k2 (and k1 which depends on
cos(2β)) we find that the maximum allowable β is:









= −

3

max1
max sin

2
1

k

χ
β  (12)

With a χmax of 10-9 s-2 and the results shown in Fig. (6), we obtain a limit of 4.8 deg
for β, which is consistent with the maximum tilt assumed for the capsule in computing
the worst-case relative trajectory.

Earth’s gravity gradients

We compute here the Earth’s gravity gradient tensor and we analyze the effects of
Earth’s gravity gradient components on a rotating detector with a generic orientation of
its spin axis with respect to the gravity gradient field.  Let us consider the gravitational
potential per unit mass at a point (x, y, z) with respect to the detector’s center of mass:

V
x R y R z RX Y Z

= −
− + − + −

µ

( ) ( ) ( )2 2 2
(13)

where RX, RY, RZ are the components of the radius vector R from the Earth’s center to the
detector’s CM (in which Z is the local vertical) and µ is the Earth’s gravitational
constant.  After projecting about the detector’s body axes in which x is the spin axis and
calling θ = ωt the rotation about the spin axis and φ the elevation angle of the spin axis
with respect to the horizontal plane:

R R t

R R t t

R R t t

x

y

z

=

=

=

( )sin( )

( )cos( )sin( )

( )cos( )cos( )

φ

φ ω

φ ω

(14)

The gravitational acceleration in body axes is obtained by substituting eqns (14) into
eqn. (13) and computing the gradient to obtain:

g
Rxx = − − +
µ

φ
3

22 3[ cos ( )] (15.1)

g
R

txy = 3
3

µ
ω φ φsin( )cos( )sin( ) (15.2)

g
R

txz = 3
3

µ
ω φ φcos( )cos( )sin( ) (15.3)

g
R

tyy = − − +
µ

φ ω φ
3

2 2 21 3 3[ cos ( ) cos ( )cos ( )] (15.4)

g
R

t tyz = 3
3

2µ
ω ω φcos( )sin( )cos ( ) (15.5)
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g
R

tzz = − +
µ

ω φ
3

2 21 3[ cos ( )cos ( )] (15.6)

Here again, the components modulated at ω are gxy and gxz (in which x is the spin
axis).  In other words, if the spin axis lies on the horizontal plane, the detector only sees
components modulated at 2ω but if it is not, components modulated at the frequency
ω   appear.  The strengths of these components are proportional to the tilt angle with
respect to the horizontal plane.  Note also that the effect of the Earth’s gravity gradient on
a rotating body can be readily applied to the space-based tests of the Equivalence
Principle in which the only difference from the balloon-based experiment is the slightly
larger value of the radial distance from the space-based sensor to the Earth’s center.

Since there are terms modulated at the signal frequency ω, we have to make sure that
they are kept lower than the accuracy with which we want to measure the signal.  From
the detector point of view, there will be requirements imposed on the centering of the
sensing masses and their attitude with respect to the Earth’s gravity field as shown in the
following section.

Gravity gradients produced by concentrated masses on board the capsule

Let us consider the reference system (x, y, z) attached to the sensor with origin at the
center of mass and with x oriented along the spin axis and let us indicate the position of a
point mass mp in proximity of the sensor in spherical coordinates (δ,γ,ρ) (see Fig. 7).

mp

δ

xb

yb

zb

γ

ρ

Fig. 7  Geometry of the sensing mass and reference frame

The position of mp is then expressed as:

γρ

γδρ

γδρ

sin

cossin

coscos

=

=

=

p

p

p

z

y

x

(16)
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The gravity gradient matrix at the detector due to the gravity field induced by a mass
point mp is:

















−

−

−
⋅

=Γ
22

22

22

5

333

333

333

ρ

ρ

ρ

ρ
xyzzx

yzxyx

xzxyx
mG p

mp
(17)

Considering a sensor that rotates with respect to a fixed point mass in its proximity
we obtain the two ω-modulated components already shown in the previous paragraphs:

′ = ′ = ⋅ + ⋅Γ Γ Γ Γ12 21 xz xyt tsin( ) cos( )ω ω (18.1)

′ = ′ = ⋅ − ⋅Γ Γ Γ Γ13 31 xz xyt tsin( ) cos( )ω ω (18.2)

The moduli of the two ω-modulated gravity gradient components Γ’12 and Γ’13 are the
same and can be expressed as follows:

22
5

yzx
mG p +

⋅
=

ρ
χ (19)

which shows that the masses located on the plane y-z (i.e., x = 0) do not generate
disturbances with the same frequency as the measured signal.

x(m)

y(m)

z(m)

Fig. 8  Locus of ω-modulated gravity gradient component with strength = 10-9 s-2

Substituting eqn. (16) into (19) and extracting ρ yields the minimum distance for a
point mass to produce a disturbing gradient equal to or less than a critical value agg-max:

z

y

x
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ρ δ γ δ γ γmin
max

/

cos cos sin cos sin=
⋅

+










−

G m

a
p

gg

2 2 2

1 3

(20)

Setting a limit of 10-9 s-2 for amax we plot the locus f(ρ,γ,δ) = 0 of the points in space
with agg = agg-max in Fig. 8 for a disturbing point mass of 1 kg.  Meridian sections (rotated
about the z-axis by the meridian angle δ) of the same locus are plotted for different values
of the angle δ in Fig. 9 where r is the radial direction.

z(m)

r(m)

Fig. 9  Meridian sections of locus in Fig. 8 for different angles δ [δ = 0 (i.e., y-z plane) -
solid black line; δ = 15° - blue dots; δ = 30° - red dash; δ = 45° - gray dash dot]

r(m)

z(m)

Fig. 10 Meridian sections for δ = 45° and different values of perturbing mass mp

(mp = 1 kg - solid black line; mp = 10 kg – blue dots; mp = 100 kg - red dash)
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The worst case meridian section at δ = 45° is plotted for different values of the
perturbing mass in Fig. 10.  The previous analysis defines exclusion zones for
concentrated masses on board the capsule.  In general, masses can be placed rather freely
on the y-z plane (perpendicular to the sensor spin axis).  Masses lying on this plane
generate only 2ω-modulated components whose strength only needs to be reasonably
smaller than the upper bound of the dynamic range of the sensor.  The Earth itself
produces such 2ω-modulated components with a strength equal to 3x10-6 s-2.  For the 2ω-
modulated term, the equivalent Earth is a mass of 22,500 kg at 1-m or a 22.5 kg at 10 cm
from the sensor.

Requirements related to the ω-modulated components are more stringent and,
consequently, we will concentrate on these components which have been dealt with in
this analysis.  In summary, concentrated masses should be placed as close as possible to
the y-z plane (perpendicular to the sensor spin axis).  For masses away from the y-z
plane, Fig. 10 defines the exclusion zones from the sensor for different mass values under
the worst possible condition of masses placed on the 45° meridian plane.

Effect of Gravity Gradients on Differential Acceleration Measurement

The differential accelerometer consists (from the mechanical point of view) of two
sensing masses with ideally coincident centers of mass (CM).  The equivalence violation
signal is measured as a differential displacement along the y-body axis of the sensor
which is orthogonal to the spin axis (i.e., the x-body axis).  In reality the two centers of
mass (or more appropriately centers of gravity) do not coincide and CM2 (i.e., the CM of
mass 2) is displaced by a position error vector δ with respect to CM1 as follows

δ

δ

δ

δ

  =

















x

y

z

(21)

We can place the body reference frame at CM1 and compute the differential
acceleration due to gravity gradients by simply multiplying the gravity gradient matrix in
body axis , that is
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where ΓE, ΓC, ΓM  are the gravity gradient matrices of the Earth, the distributed capsule
mass and concentrated masses on board the capsule, respectively.  Since the differential
accelerometer measures only the component along the y-body axis, we obtain finally:
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z  ( ) ( ) ( )= + + + + + + + +Γ Γ Γ Γ Γ Γ Γ Γ Γ (23)
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in which Γyx
E , Γyx

C , and Γyx
M  are the components modulated at the signal frequency ω while

the other terms in eqn. (23) are modulated at 2ω .  In conclusion, the disturbing
differential acceleration along y produced by gravity gradients can be expressed as
follows:

δ
µ

φ φ ω δ β β ω δ

ω ω δ ω δ

a
R

t k k k t

a f f

y x x

M y y z z

  cos( )sin( )sin( )  ( )sin( ) cos( ) sin( )

         ( )   ( , )   ( , )

 < + + +[ ]

+ + +

3 2 2

2 2

3 2 3 1 (24)

where k1, k2, and k3 are the gravity gradient terms (see previous subsections) generated by
the capsule in the capsule-body reference frame, φ is the elevation of the spin axis with
respect to the local horizon, β is the elevation of the spin axis with respect to the
equatorial plane of the capsule, aM(ω) is the ω-modulated disturbing acceleration (in
functional form) produced by concentrated mass on board the capsule (see previous
subsection) and fy(2ω, δy) and fz(2ω, δz) represent all the other 2ω-modulated components
which have been separated in eqn. (24) according to the centering error components.
Note that the 2ω-components depend only on the centering errors δy and δz while the ω-
components depend only on the centering error δx.  The less-than sign in eqn. (24) is due
to the fact that, on the right hand side of the equation, we have adopted the strongest
value of the ω-modulated gravity gradient component of the capsule, that is, for α = 0
(see Fig. 4).  Moreover, from the analysis of the capsule gravity gradients, we have
concluded that if we keep the sensor (at the CM) about 40 cm away from the heavy part
of the chamber/cryostat walls, the ω-modulated gravity gradients are well below the
critical value of about 10-9 s-2.  Based on similar reasoning, we assume that the
concentrated masses on board the capsule are placed outside of the exclusion zones
(defined in the previous subsection) in order to keep them below the critical value.  In
other words, an appropriate design and a careful mechanical construction of the sensing
masses (δx of order microns) will make the gravity gradient contribution of the capsule
and the concentrated masses on board the capsule negligible.

To attenuate the effect of the gravity gradient of the Earth we have to make sure that
the product sin( )cos( )φ φ δx is sufficiently small.  In other words we can trade the position
error δx between the CMs of the sensing masses along the spin axis for the tolerable angle
φ of the spin axis with respect to the local horizontal. For small values of φ, we readily
compute that for the first term on the right hand side of eqn. (15.3) to be smaller than, let
us say, 10-15 g, the product φδx must be smaller than 0.1 deg-µm.  This requirement must
be considered in the design of the detector, the release mechanism, and the capsule
leveling system.  The complexity of some subsystems can be traded for the simplicity of
other subsystems among those three.

Conclusions

The paper focuses on the highlights of the analysis of the effects of gravity gradients
produced by distributed masses (capsule/cryostat), concentrated masses (equipment) and
the Earth’s mass.  The results obtained are important for defining: (a) the size of the
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cryostat in which the detector free falls; (b) the exclusion zones where heavy equipment
should not be placed on board the capsule; and (c) the tolerable tilt of the sensor spin axis
with respect to the horizontal plane versus the centering error of the centers of mass of
the sensing masses.
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Abstract
The much-improved accuracy of G-dot expected from SEE mission makes it realistic to
speak in terms of a measurement of G-dot, rather than an improvement in the upper bound
on |G-dot|.  The design goal for the SEE Mission is to be able to measure (G-dot)/G to
within 1 part in 101 4.  This accuracy is expected to be sufficient to observe effects predicted
by extra-dimension theories and, hence, to discriminate among different models.

1. Introduction
A measurement of G-dot can provide one of the
very few ways of using experiment to discriminate
among the various multidimensional  theories (see,
for example, Marciano, 1984; Damour, Gibbons &
Taylor, 1988; Ivashchuk & Melnikov, 1988;
Bronnikov, Ivashchuk & Melnikov, 1988;
Melnikov, 1994; Drinkwater et al. 1999; and
Ivashchuk & Melnikov, 2000).  There has never
been a laboratory measurement of G-dot (using
test masses in a controlled situation) at
cosmologically interesting levels of precision.
Attempts have been made to do so, but the extreme
difficulty of such an undertaking has prevented
even the best of the terrestrial experiments from
reaching the presently foreseen requirements for
testing theories.  The current observational—vis-à-
vis experimental—evidence regarding G-dot
reveals scattered results (Gillies, 1997). A SEE
mission (Sanders & Deeds, 1992; Alexeev et al.,
1993; Bronnikov et al., 1993; Alexeev et al., 1994;
Sanders & Gillies, 1996; Sanders et al., 1997;
Israelsson, Lee & Sanders, 1999; Sanders et al.,
1999; Sanders et al., 2000; Alexeev et al., 2001),
on the other hand, may hold promise of providing a
controlled experiment with test masses which, via
their use in space, have the potential to provide very
fine accuracy, thus perhaps making it possible for
the first time to discriminate among various
possible unified theories.

The capability for making such accurate
measurements of G-dot will require the successful
handling of a host of potential perturbations
(Sanders et al., 2000).  For example, we have
found ways to drastically reduce the effective drag
on test bodies within as satellite.  The SEE concept
of “Almost Zero Time-Averaged Drag” relies on
focusing on test bodies, in contrast to the original
Lange-APL concept, which focused on the satellite
as a whole rather than the test bodies (Lange, 1964;
Staffs, 1974).  The result of this is that drag is
predicted to be ~10-18 g, which if achieved would
be about 6 orders of magnitude lower than in any
previous or planned space mission.
Most of the current promising approaches to
unification theory, including string theories, p-
brane theories, and supergravity, incorporate the
gravitational force at a fundamental level.  Although
a number of different theoretical schemes have
been proposed, a lack of precise experimental
evidence presently makes it almost impossible to
assess the validity of alternative schemes.
Gravitation is the missing link in efforts to achieve
a satisfactory unification theory of physics.  The
very precise experimental data which would be
sought via a SEE mission could thus be key for
advancing the prospects of unification theory.
In any case, it would be of great scientific value to
demonstrate unequivocally that a fundamental
"constant" of Nature is not constant; almost
nothing could do more to invigorate interest in the
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new theories, most of which do in fact predict time
variation of G and other fundamental "constants."
A finding of non-zero G-dot would at the very least
require revision of general relativity, since it
assumes a constant value of G.  More broadly, this
would clearly mark the boundaries where general
relativity is valid, and specify the onset of new
physics.

2. Objectives of a SEE Mission
The SEE mission has six measurement goals:
1) Measure the value of G-dot, the time derivative

of G.
2) Test for violation of the Inverse-Square-Law

(ISL) at distances on the order of meters.
3) Test for ISL violation at distances on the order

of the radius of the Earth (RE).
4) absolute value of the Gravitational constant G.
5) Test for violation of the Weak Equivalence-

Principle (WEP)—i.e., for composition-
dependent violations—at distances on the order
of meters.

6) Test for WEP violations at distances on the
order of RE.

The targeted design accuracies for the SEE mission
are shown in Table 1.  In this paper we focus on
the G-dot component of the mission.

3. Expected Significance of a SEE Mission
The general focus of the SEE Mission is one of
advancing the experimental base required for
testing unification theories. As such, SEE is being
designed to substantially increase the precision and

accuracy of measurement of G-dot, since it is likely
to be decisive in discriminating among modern
theories, which are expected to make predictions in
the range

~10-13/yr < |G-dot|/G < ~10-11/yr.
The recent discovery that the expansion of the
Universe seems to be accelerating—rather than
decelerating, as previously expected (Garnavich et
al. 1998a; Garnavich et al. 1998b; Riess et al.;
Perlmutter et al., 1998)—raises fundamental
questions about the structure of space-time and
about the possible existence of some form of
"Dark Energy," or "quintessence” (Caldwell, Dave,
& Steinhardt, 1997).  The need to have
experimental windows opened on these questions
and, hence, on cosmology and unification theory, is
one of the strongest motivating factors underlying
the design of the SEE Mission. The very precise
experimental data that will be sought during the
course of a SEE interaction will, for instance, be
aimed at revealing the role that gravity plays in
cosmologies that incorporate quintessence.
Therefore, we expect that the SEE mission results
will either:
ÿ give extremely accurate confirmation of

presently-accepted theories, or
ÿ indicate violations of them, while suggesting

the direction of necessary changes.

4. Calculations of Secular Change in G

A striking feature of recent theories of quantum
gravity and string theory is that they cannot retain a
constant G, but rather require various secular rates
of change.  The assumption that the "coupling
constant" G is actually constant is not consistent

Table 1:  Expected Accuracy of SEE Tests and Measurements

Test/Measurement Expected Accuracy Comment

(G-dot)/G ~10-14/yr in one year
1,000 times better than current bound;
likely to discriminate against most modern
theories

ISL at ~few meters 2 x 10-7 1,000 to 10,000 times better than current bound
ISL at ~RE 1 x 10-10 100 times better than current bound

G 0.33 ppm (330 ppb) 100 times more precise in single day
than ground-based experiment in months

WEP at ~few meters <10-7 (\ a<10-4) Moderately better than ground-based
 experiments

WEP at ~RE <10-16 (\ a<10-13) 1,000 to 10,000 better than current bound
but 100 times weaker than STEP
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with these unification theories.   
Moreover, the rate of deceleration or acceleration of
the Universe is closely linked with the value of G-
dot, and the form of the linkage is very model-
dependent.  The measurement of G-dot on a SEE
mission will be sufficiently accurate that it will
place severe constraints on how the Universe is
evolving by showing that there is a very narrow
range of allowed combinations of (1) the value of
the acceleration and (2) viable forms of unification
theory.
We have calculated the values of (G-dot)/G under
various assumptions (Melnikov et al., 2002).   Two
important cases are (a) 10-dimensional
supergravity (p-brane theory requires 10 or 11
dimensions; see, for example, Overduin &
Wesson, 1997) and (b) scalar-tensor (S-T)
cosmologies (of which Brans-Dicke theory is a
special case).  We find that a 10-dimensional
cosmology with two-component anisotropic fluid
and positive acceleration (negative “deceleration
parameter” q) leads to

(G-dot)/G @ -4 x 10-12/yr. (1)
Observational data indicates that q is negative—i.e.,
the expansion rate is increasing rather than
decreasing, as previously expected.  A key question
in modern cosmology is the nature of the so-called
“dark energy” and the field resulting from it
which could cause this acceleration.
Smaller values of (G-dot)/G are obtained from
scalar-tensor cosmologies (see Figure 1).  The
expression for G-dot in this case is

wg2 + g – q’ = 0 (2)
where g is the ratio of (G-dot)/G to the Hubble rate
H.  The results are sensitive to the S-T parameter
w, which is very large (w>2500) because it is the
ratio of the tensor to the scalar amplitudes, and
general relativity is so nearly correct.  (If the metric
were pure tensor, as in general relativity, w would
be infinite.)  The results for (G-dot)/G are also
very sensitive to the value assumed for the
deceleration parameter q.  More particularly, the
result depends critically on the related parameter,
q'@1.1+q.  If q' = 0, we find

|G-dot|/G  <  3 x 10-14/yr  (3)
However, if we choose the largest value of q'
consistent with observations, viz. q'=0.4, we find:

|G-dot|/G  <  0.9 x 10-12/yr.  (4)

All of the above G-dot predictions (Eqs. 1, 3, & 4)
assume that the Hubble rate, H, is H@0.7x10-10/yr.
We note that the error bars for a measurement of
(G-dot)/G at the level of 10-14 would be about 1
mm high on the scale of Figure 1.  Thus, it is clear
that such accuracy, coupled with likely future
improved knowledge of the deceleration parameter,
would place extremely severe constraints on w.
From the spread among the predictions for G-dot,
we see that the value of G-dot is a very sensitive
probe of the type of cosmology and the values of
key parameters.  It is highly unlikely that, by
coincidence, more than one theoretical model will
predict any given value of (G-dot)/G to within the
accuracy expected from a SEE mission, viz.
~10-14/yr.  Thus, a measurement of (G-dot)/G at
this accuracy will be able to discriminate strongly
against all but a handful of specific theoretical
models.  It will be an effective “theory selector”.
A number of other authors have also investigated
the relationship among G-dot and various
parameters of extra-dimension models.  Recently
Perrotta, Baccigalupi, & Matarrese (1999) explored
variants of Brans-Dicke theory which they call
“Extended Quintessence.” For illustration they
obtained numerical results for two simple forms of
the gravitational part of the Lagrangian, namely
“Induced Gravity” (IG),

F(f)R = xf2R, (5)
as given in their equation 27, and “Nonminimal
Coupling” (NMC),

F(f)R = (1+xf2)R

Figure 1. G-dot depends on the rate of
acceleration of the expansion of the Universe in
scalar-tensor theories
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or (1/(8pG) + xf2)R,  (6)
as given in their equations 30 and 31.  Here R is
the Ricci curvature scalar, f is the quintessence
field, and x is a coupling parameter.  Note that
choosing x=0 gives ordinary general relativity. The
authors investigate the experimental bounds on x
and conclude that the tightest bounds come from
the present lower bound the Brans-Dicke
parameter—which the authors conservatively take
as w ≥500—rather than from the present upper
bound on G-dot, viz. |G-dot|/G £ 10-11/yr (Hellings
and Damour & Taylor). To wit, they find that the
bound on x obtained from G-dot is roughly only

x £ 3 x 10-2  (IG and NMC) (7)
while the bounds obtained from w are much tighter,
namely roughly

x £ 5 x 10-4  (IG) (8)
and

x £ 5 x 10-3  (NMC). (9)

Perrotta et al. arrived at their conclusions by
appealing to a definition of the Planck Mass that
sets it equal to 1/G1/2, which in turn is taken to be
the low energy value of the quintessence coupling
parameter.  By choosing this particular
parameterization, they make it possible to interpret
predictions of the quintessence field strength in
terms of a quantity (MPl) which is well understood
in relativistic theories of gravity and cosmology.
A similar approach has been used by Chiba
(1999). His choice of the gravitational part of the
Lagrangian was essentially the same as for the
NMC case of Perrotta et al., viz.

R/2 x [1/(8pGbare) – x f2] (10)
See Chiba’s equation 2.1 and the discussion in the
immediately following paragraph.  Thus, -x/2 in
Chiba’s notation is essentially equivalent to x in
the notation of Perrotta et al.  Chiba uses two
different forms of the potential, namely an inverse-
power law (his equation 2.6) and an exponential
(his page 2, 2n d column, near bottom), following
Zlatev et al. and Steinhardt et al.  With these
choices of potential, Chiba finds that the bound on
x inferred from the current experimental bound on
G-dot is

-10-2 £ x £ 10-2 ~ 10-1  (11)
 (Chiba’s equation 2.23).  This is roughly
equivalent to the result obtained by Perrotta et al.

(Eq. 8) when account is taken of the factor of –2
between the meanings of x in the two papers.
Earlier investigators have explored the time
variation of fundamental constants, but
unfortunately most of this work would now require
modification in the light of our present knowledge
of accelerating Hubble expansion.  Among early
work with explicit numerical results are those of
Wu and colleagues (Wu & Wang, 1986; Wu &
Wang, 1987; Chen & Wu, 1989).

5.  Implications of a SEE Mission
If SEE is able to achieve the goal of d(G-dot)/G ~
10-14, one result will be a very accurate
measurement of x from G-dot in the context of the
two models of Perrotta et al.  The predicted
uncertainties should be approximately

Dx ~ 3 x 10-5  (IG) (12)
Dx ~ 2 x 10-5 to 8 x 10-5 (NMC) (13)

 (The latter error varies with x and G-dot because
of non-linearity.) These anticipated uncertainties
are significantly smaller than the upper bounds
now available from w.  The improvement is about 1
order of magnitude over the IG case of Perrotta et
al. (Eq. 8) and 2 orders of magnitude over their
NMC case (Eq. 9).  
A measurement of G-dot can provide an
experimental test of the specific theoretical models
via the implications for parameter values and
whether these are consistent.  For example, if the
G-dot measured by as SEE mission gives

(G-dot)/G = 3 x 10-13, (14)
then the IG model of Perrotta et al. requires the
value of x to be  

x ~ 9 x 10-4  (IG). (15)
This is moderately inconsistent with the bound
from w (Eq. 8).  Moreover, if the lower bound on
w is significantly raised, then the inconsistency
would become unacceptably large.  Thus, this
version of IG model would fail the test of
experiment.
An alternative test suggested by Perrotta et al.
relies on the variation of the Hubble length H-1 with
the distance parameter z.  From their figure 2, one
may infer that the Hubble length at z+1=1000 is
~26% higher if x is zero than if it has the
illustrative value 10-2.  It follows that, when the state
of the art of Hubble measurements is capable of an
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error ~1%, its variation with z will constitute a
measurement of x with error ~10-3.  Although this
is looser than the present bound of x from w and
the expected error on x from G-dot, in the future
Hubble measurements could possibly provide the
necessary complement to other measurements to
carry out a cosmologically-significant test of the
IG model or other models.

6. Conclusion
A measurement of G-dot can provide one of the
very few ways of using experiment to discriminate
among the various multidimensional theories. A
SEE mission may hold promise of providing a
controlled experiment with test masses which have
the potential to provide very fine accuracy, thus
perhaps making it possible for the first time to
discriminate among various possible unified
theories. Gravitation is the missing link in efforts
to achieve a satisfactory unification theory of
physics.  The very precise experimental data which
would be sought via a SEE mission could thus be
key for advancing the prospects of unification
theory.

ÿ Because of the significance associated with
experimental confirmation of a time-varying G,
nothing could do more to invigorate interest in
the new theories, most of which do in fact
predict time variation of G and other
fundamental "constants."

ÿ A finding of non-zero G-dot would of course
require extensions of general relativity, since it
assumes a constant value of G.  More broadly,
this would clearly mark the boundaries where
general relativity is valid, and specify the onset
of new physics.
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Tests of CPT and Lorentz Symmetry using Hydrogen and
Noble-Gas Masers

Ronald L. Walsworth
Harvard-Smithsonian Center for Astrophysics

Cambridge, MA 02138, U.S.A.

We discuss two recent measurements constraining CPT and Lorentz violation using
the 129Xe/3He Zeeman maser and atomic hydrogen masers. Experimental inves-
tigations of CPT and Lorentz symmetry provide important tests of the framework
of the standard model of particle physics and theories of gravity. The two-species
129Xe/3He Zeeman maser bounds violations of CPT and Lorentz symmetry of the
neutron at the 10−31 GeV level. Measurements with atomic hydrogen masers pro-
vide a clean limit of CPT and Lorentz symmetry violation of the proton at the
10−27 GeV level.

Introduction

Lorentz symmetry is a fundamental feature of modern descriptions of nature.
Lorentz transformations include both spatial rotations and boosts. Therefore,
experimental investigations of rotation symmetry provide important tests of
the framework of the standard model of particle physics and single-metric
theories of gravity 1.

In particular, the minimal SU(3)×SU(2)×U(1) standard model success-
fully describes particle phenomenology, but is believed to be the low energy
limit of a more fundamental theory that incorporates gravity. While the fun-
damental theory should remain invariant under Lorentz transformations, spon-
taneous symmetry-breaking could result at the level of the standard model in
small violations of Lorentz invariance and CPT (symmetry under simultaneous
application of Charge conjugation, Parity inversion, and Time reversal) 2.

Clock comparisons provide sensitive tests of rotation invariance and hence
Lorentz symmetry by bounding the frequency variation of a given clock as
its orientation changes, e.g., with respect to the distant stars 3. In practice,
the most precise limits are obtained by comparing the frequencies of two co-
located clocks as they rotate with the Earth. Atomic clocks are typically
used, involving the electromagnetic signals emitted or absorbed on hyperfine
or Zeeman transitions.

Here we discuss results from two recent atomic clock tests of CPT and
Lorentz symmetry:

(1) Using a two-species 129Xe/3He Zeeman maser 4,5,6 we placed a limit on
CPT and Lorentz violation of the neutron of approximately 10−31 GeV7,
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improving by more than a factor of six on the best previous measure-
ment 8,9.

(2) We employed atomic hydrogen masers to set an improved clean limit on
CPT and Lorentz violation of the proton, at the level of nearly 10−27

GeV 10.

Motivation

Our atomic clock comparisons are motivated by a standard model extension
developed by Kostelecký and others 3,11,12,13,14,15,16,17,18,19. This theoretical
framework accommodates possible spontaneous violation of CPT and Lorentz
symmetry, which may occur in a fundamental theory combining the standard
model with gravity. For example, this might occur in string theory 20. The
standard model extension is quite general: it emerges as the low-energy limit
of any underlying theory that generates the standard model and contains spon-
taneous Lorentz symmetry violation 21. The extension retains the usual gauge
structure and power-counting renormalizability of the standard model. It also
has many other desirable properties, including energy-momentum conserva-
tion, observer Lorentz covariance, conventional quantization, and hermiticity.
Microcausality and energy positivity are expected.

This well-motivated theoretical framework suggests that small, low-energy
signals of CPT and Lorentz violation may be detectable in high-precision ex-
periments. The dimensionless suppression factor for such effects would likely
be the ratio of the low-energy scale to the Planck scale, perhaps combined with
dimensionless coupling constants 3,11,12,13,14,15,16,17,18,19,20,21. A key feature of
the standard model extension of Kostelecký et al. is that it is at the level of
the known elementary particles, and thus enables quantitative comparison of
a wide array of tests of Lorentz symmetry. In recent work the standard model
extension has been used to quantify bounds on CPT and Lorentz violation from
measurements of neutral meson oscillations 11; tests of QED in Penning traps
12; photon birefringence in the vacuum13,14; baryogenesis 15; hydrogen and an-
tihydrogen spectroscopy16; experiments with muons17; a spin-polarized torsion
pendulum 18; observations with cosmic rays 19; and atomic clock comparisons
3. Recent experimental work motivated by this standard model extension in-
cludes Penning trap tests by Gabrielse et al. on the antiproton and H− 22, and
by Dehmelt et al. on the electron and positron 23,24, which place improved
limits on CPT and Lorentz violation in these systems. Also, a re-analysis by
Adelberger, Gundlach, Heckel, and co-workers of existing data from the “Eöt-
Wash II” spin-polarized torsion pendulum 25,26 sets the most stringent bound
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Figure 1: Schematic of the 129Xe/3He Zeeman maser

to date on CPT and Lorentz violation of the electron: approximately 10−29

GeV 27.
In particular, the standard model extension admits Lorentz-violating cou-

plings of noble gas nuclei and hydrogen atoms to expectation values of tensor
fields. (Some of these couplings also violate CPT.) Each of the tensor fields
may have an unknown magnitude and orientation in space, to be limited by
experiment.

129Xe/3He maser test of CPT and Lorentz symmetry

The design and operation of the two-species 129Xe/3He maser has been dis-
cussed in recent publications 4,5,6. (See the schematic in Fig. 1.) Two dense,
co-located ensembles of 3He and 129Xe atoms perform continuous and simulta-
neous maser oscillations on their respective nuclear spin 1/2 Zeeman transitions
at approximately 4.9 kHz for 3He and 1.7 kHz for 129Xe in a static magnetic
field of 1.5 gauss. This two-species maser operation can be maintained in-
definitely. The population inversion for both maser ensembles is created by
spin exchange collisions between the noble gas atoms and optically-pumped
Rb vapor 28. The 129Xe/3He maser has two chambers, one acting as the spin
exchange “pump bulb” and the other serving as the “maser bulb”. This two
chamber configuration permits the combination of physical conditions neces-
sary for a high flux of spin-polarized noble gas atoms into the maser bulb,
while also maintaining 3He and 129Xe maser oscillations with good frequency
stability: ∼ 100 nHz stability is typical for measurement intervals of ∼ 1 hour
6. (A single-bulb 129Xe/3He maser does not provide good frequency stability
because of the large Fermi contact shift of the 129Xe Zeeman frequency caused
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by 129Xe-Rb collisions 29.) Either of the noble gas species can serve as a pre-
cision magnetometer to stabilize the system’s static magnetic field, while the
other species is employed as a sensitive probe for CPT and Lorentz-violating
interactions or other subtle physical influences. (For example, we are also us-
ing the 129Xe/3He maser to search for a permanent electric dipole moment of
129Xe as a test of time reversal symmetry; hence the electric field plates in Fig.
1.)

We search for a signature of Lorentz violation by monitoring the relative
phases and Zeeman frequencies of the co-located 3He and 129Xe masers as the
laboratory reference frame rotates with respect to the distant stars. We operate
the system with the quantization axis directed east-west on the Earth, the 3He
maser free-running, and the 129Xe maser phase-locked to a signal derived from
a hydrogen maser in order to stabilize the magnetic field. To leading order,
the standard model extension of Kostelecký et al. predicts that the Lorentz-
violating frequency shifts for the 3He and 129Xe maser are the same size and
sign 3. Hence the possible Lorentz-violating frequency shift in the free-running
3He maser (δνHe) is given by:

δνHe = δνLorentz [γHe/γXe − 1] , (1)

where δνLorentz is the sidereal-day-period modulation induced in both noble gas
Zeeman frequencies by the Lorentz-violating interaction, and γHe/γXe ≈ 2.75
is the ratio of gyromagnetic ratios for 3He and 129Xe.

We acquired 90 days of data for this experiment over the period April, 1999
to May, 2000. We reversed the main magnetic field of the apparatus every
∼ 4 days to help distinguish possible Lorentz-violating effects from diurnal
systematic variations. In addition, we carefully assessed the effectiveness of
the 129Xe co-magnetometer, and found that it provides excellent isolation from
possible diurnally-varying ambient magnetic fields, which would not average
away with field reversals. Furthermore, the relative phase between the solar
and sidereal day evolved about 2π radians over the course of the experiment;
hence diurnal systematic effects from any source would be reduced by averaging
the results from the measurement sets.

We analyzed each day’s data and determined the amplitude and phase of a
possible sidereal-day-period variation in the free-running 3He maser frequency.
(See Fig. 2 for an example of one day’s data.) We employed a linear least
squares method to fit the free-running maser phase vs. time using a minimal
model including: a constant (phase offset); a linear term (Larmor precession);
and cosine and sine terms with sidereal day period. For each day’s data,
we included terms corresponding to quadratic and maser amplitude-induced
phase drift if they significantly improved the reduced chi-squared 30. As a final
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Figure 2: Typical data from the Lorentz/CPT test using the 129Xe/3He maser. 3He maser
phase data residuals are shown for one sidereal day. Larmor precession and drift terms have
been removed, and the best-fit sinusoid curve (with sidereal-day-period) is displayed

check, we added a faux Lorentz-violating effect of known phase and amplitude
to the raw data and performed the analysis as before. We considered our
data reduction for a given sidereal day to be successful if the synthetic physics
was recovered and there was no significant change in the covariance matrix
generated by the fitting routine.

Using the 90 days of data, we found no statistically significant sidereal vari-
ation of the free-running 3He maser frequency at the level of 45 nHz (one-sigma
confidence). Kostelecký and Lane report that the nuclear Zeeman transitions
of 129Xe and 3He are primarily sensitive to Lorentz-violating couplings of the
neutron, assuming the correctness of the Schmidt model of the nuclei 3. Thus
our search for a sidereal-period frequency shift of the free-running 3He maser
(δνHe) provides a bound to the following parameters characterizing the mag-
nitude of Lorentz/CPT violations in the standard model extension:

∣∣∣−3.5b̃nJ + 0.012d̃nJ + 0.012g̃nD,J
∣∣∣ ≤ 2πδνHe,J (129Xe/3He maser) (2)

Here J = X,Y denotes spatial indices in a non-rotating frame, with X and
Y oriented in a plane perpendicular to the Earth’s rotation axis and we have
taken h̄ = c = 1. The parameters b̃nJ , d̃nJ , and g̃nD,J describe the strength
of Lorentz-violating couplings of the neutron to possible background tensor
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fields. b̃nJ and g̃nD,J correspond to couplings that violate both CPT and Lorentz
symmetry, while d̃nJ corresponds to a coupling that violates Lorentz symmetry
but not CPT. All three of these parameters are different linear combinations
of fundamental parameters in the underlying relativistic Lagrangian of the
standard model extension 3,11,12,13,14,15,16,17,18.

It is clear from Eqn. (2) that the 129Xe/3He clock comparison is primarily
sensitive to Lorentz/CPT violations associated with the neutron parameter b̃nJ .
Similarly, the most precise previous search for Lorentz/CPT violations of the
neutron, the 199Hg/133Cs experiment of Lamoreaux, Hunter et al. 8,9, also had
principal sensitivity to b̃nJ at the following level 3:∣∣∣∣23 b̃nJ + {small terms}

∣∣∣∣ ≤ 2πδνHg,J (199Hg/133Cs). (3)

In this case, the experimental limit, δνHg,J , was a bound of 55 nHz (one-
sigma confidence) on a sidereal-period variation of the 199Hg nuclear Zee-
man frequency, with the 133Cs electronic Zeeman frequency serving as a co-
magnetometer.

Therefore, in the context of the standard model extension of Kostelecký
and co-workers 3, our 129Xe/3He maser measurement improves the constraint
on b̃nJ to approximately 10−31 GeV, or more than six times better than the
199Hg/133Cs clock comparison 8,9. Note that the ratio of this limit to the neu-
tron mass (10−31GeV/mn ∼ 10−31) compares favorably to the dimensionless
suppression factor mn/MPlanck ∼ 10−19 that might be expected to govern
spontaneous CPT and Lorentz symmetry breaking originating at the Planck
scale.

We expect more than an order of magnitude improvement in sensitivity
to Lorentz/CPT violation of the neutron using a new device recently demon-
strated in our laboratory: the 21Ne/3He Zeeman maser. The expected excep-
tional performance of the 21Ne/3He maser is largely due to two factors: (i)
the greater theoretical sensitivity of the 21Ne/3He system to CPT and Lorentz
violation because of a larger ratio of nuclear magnetic moments; and (ii) the
more similar physical and chemical properties of 21Ne and 3He, compared to
129Xe and 3He, with resultant practical advantages for the 21Ne/3He maser as
a differential atomic clock.

Hydrogen maser test of CPT and Lorentz symmetry

The hydrogen maser is an established tool in precision tests of fundamental
physics 31. Hydrogen masers operate on the ∆F = 1, ∆mF = 0 hyperfine
transition in the ground state of atomic hydrogen 32. Hydrogen molecules are
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Figure 3: Schematic of the H maser in its ambient field stabilization loop.

dissociated into atoms in an RF discharge, and the atoms are state selected
via a hexapole magnet (Fig. 3). The high field seeking states, (F = 1, mF =
+1, 0) are focused into a Teflon coated cell which resides in a microwave cavity
resonant with the ∆F = 1 transition at 1420 MHz. The F = 1, mF = 0
atoms are stimulated to make a transition to the F = 0 state by the field of
the cavity. A static magnetic field of ∼ 1 milligauss is applied to maintain the
quantization axis of the H atoms.

The hydrogen transitions most sensitive to potential CPT and Lorentz
violations are the F = 1, ∆mF = ±1 Zeeman transitions. In the 0.6 mG
static field applied for these measurements, the Zeeman frequency is νZ ≈ 850
Hz. We utilize a double resonance technique to measure this frequency with a
precision of ∼ 1 mHz 33,34. We apply a weak magnetic field perpendicular to
the static field and oscillating at a frequency close to the Zeeman transition.
This audio-frequency driving field couples the three sublevels of the F = 1
manifold of the H atoms. Provided a population difference exists between the
mF = ±1 states, the energy of the mF = 0 state is altered by this coupling,
thus shifting the measured maser frequency in a carefully analyzed manner33,34

described by a dispersive shape (Fig. 4(a)). Importantly, the maser frequency
is unchanged when the driving field is exactly equal to the Zeeman frequency.
Therefore, we determine the Zeeman frequency by measuring the driving field
frequency at which the maser frequency in the presence of the driving field is
equal to the unperturbed maser frequency.
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The F = 1, ∆mF = ±1 Zeeman frequency is directly proportional to the
static magnetic field, in the small-field limit. Four layers of high permeabil-
ity (µ-metal) magnetic shields surround the maser (Fig. 3), screening external
field fluctuations by a factor of 32 000. Nevertheless, external magnetic field
fluctuations cause remnant variations in the observed Zeeman frequency. As
low frequency magnetic noise in the neighborhood of this experiment is much
larger during the day than late at night, the measured Zeeman frequency could
be preferentially shifted by this noise (at levels up to ∼ 0.5 Hz) with a 24 hour
periodicity which is difficult to distinguish from a true sidereal signal in our
relatively short data sample. Therefore, we employ an active stabilization
system to cancel such magnetic field fluctuations (Fig. 3). A fluxgate magne-
tometer placed within the maser’s outer magnetic shield controls large (2.4 m
dia.) Helmholtz coils surrounding the maser via a feedback loop to maintain
a constant ambient field. This feedback loop reduces the fluctuations at the
sidereal frequency to below the equivalent of 1 µHz on the Zeeman frequency
at the location of the magnetometer.

The Zeeman frequency of a hydrogen maser was measured for 32 days over
the period Nov., 1999 to March, 2000. During data taking, the maser remained
in a closed, temperature controlled room to reduce potential systematics from
thermal drifts which might be expected to have 24 hour periodicities. The feed-
back system also maintained a constant ambient magnetic field. Each Zeeman
measurement took approximately 20 minutes to acquire and was subsequently
fit to extract a Zeeman frequency (Fig. 4(a)). Also monitored were maser am-
plitude, residual magnetic field fluctuation, ambient temperature, and current
through the solenoidal coil which determines the Zeeman frequency (Fig. 3).

The data were then fit to extract the sidereal-period sinusoidal variation
of the Zeeman frequency. (See Fig. 4(b) for an example of 11 days of data.)
In addition to the sinusoid, piecewise linear terms (whose slopes were allowed
to vary independently for each day) were used to model the slow remnant
drift of the Zeeman frequency. No significant sidereal-day-period variation
of the hydrogen F = 1, ∆mF = ±1 Zeeman frequency was observed. Our
measurements set a bound on the magnitude of such a variation of δνHZ ≤ 0.37
mHz (one-sigma level). Expressed in terms of energy, this is a shift in the
Zeeman splitting of about 1 · 10−27 GeV.

The hydrogen atom is directly sensitive to CPT and Lorentz violations of
the proton and the electron. Following the notation of reference 16, one finds
that a limit on a sidereal-day-period modulation of the Zeeman frequency
(δνHZ ) provides a bound to the following parameters characterizing the magni-
tude of Lorentz/CPT violations in the standard model extension of Kostelecký
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Figure 4: (a) An example of a double resonance measurement of the F = 1, ∆mF = ±1
Zeeman frequency in the hydrogen maser. The change from the unperturbed maser frequency
is plotted versus the driving field frequency. (b) Zeeman frequency data from 11 days of the
Lorentz/CPT test using the H maser.

and co-workers:

|be3 + bp3 − de30me − dp30mp −He
12 −Hp

12| ≤ 2πδνHZ (4)

for the low static magnetic fields at which we operate. (Again, we have taken
h̄ = c = 1.) The terms be and bp describe the strength of background tensor
field couplings that violate CPT and Lorentz symmetry while the H and d
terms describe couplings that violate Lorentz symmetry but not CPT 16. The
subscript 3 in Eqn. (4) indicates the direction along the quantization axis of
the apparatus, which is vertical in the lab frame but rotates with respect to
the fixed stars with the period of the sidereal day.

As in refs. 3,23, we can re-express the time varying change in the hydrogen
Zeeman frequency in terms of parameters expressed in a non-rotating frame as

2πδνHZ,J =
(
b̃pJ + b̃eJ

)
sinχ. (5)

where b̃wJ = bwj − dwj0mw − 1
2εJKLH

w
KL, J = X,Y refers to non-rotating spatial

indices in the plane perpendicular to the rotation vector of the earth, w refers
to either the proton or electron parameters, and χ = 48◦ is the co-latitude of
the experiment.

As noted above, a re-analysis by Adelberger, Gundlach, Heckel, and co-
workers of existing data from the “Eöt-Wash II” spin-polarized torsion pendu-
lum 25,26 sets the most stringent bound to date on CPT and Lorentz violation
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of the electron: b̃eJ ≤ 10−29 GeV 27. Therefore, in the context of the stan-
dard model extension of Kostelecký and co-workers 16,3 the H maser measure-
ment to date constrains CPT and Lorentz violations of the proton parameter
b̃pJ ≤ 2 · 10−27 GeV at the one sigma level. This limit is comparable to that
derived from the 199Hg/133Cs experiment of Lamoreaux, Hunter et al. 8,9 but
in a much cleaner system (the hydrogen atom nucleus is a proton, compared
to the complicated nuclei of 199Hg and 133Cs).

We expect that the sensitivity of the H maser Lorentz/CPT test can be
improved by more than an order of magnitude through technical upgrades to
the maser’s thermal and magnetic field systems; better environmental control
of the room housing the maser; and a longer period of data acquisition.

Conclusions

Precision comparisons of atomic clocks provide sensitive tests of CPT and
Lorentz symmetry, thereby probing extensions to the standard model in which
these symmetries can be spontaneously broken. Measurements using the two-
species 129Xe/3He Zeeman maser constrain violations of CPT and Lorentz
symmetry of the neutron at the 10−31 GeV level. Measurements with atomic
hydrogen masers provide clean tests of CPT and Lorentz symmetry violation
of the proton at the 10−27 GeV level. Improvements in both experiments are
being pursued.
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Optical Atomic Clocks for Space

Leo Hollberg, Jim Bergquist, and Chris Oates

Time and Frequency Division
National Institute of Standards and Technology, Boulder, CO

At NIST, in Boulder, we have started a project to develop and evaluate advanced optical
frequency standards for applications in space.  Optical standards promise many advantages over
traditional microwave standards primarily because they operate at 100,000 times higher
frequency (see Slide 1).  Thus, stable laser oscillators, referenced to narrow resonances in laser-
cooled atoms will be the time and frequency standards of the future.  Projected fractional
frequency uncertainties for optical standards are at the 10-18 level.  Our research effort focuses on
eliminating or reducing the most serious impediments to the performance of the optical frequency
standards, and in particular studying what might be possible by taking advantage of a micro-g
environment.

We are presently evaluating the performance of two independent optical frequency
standards, one based on 5 million laser-cooled calcium atoms (at 456 THz or 657 nm) (see Slides
2-4), and the other on a single trapped Hg+  ion (at 1064 THz or 282 nm) (Slides 5-7)).  We have
developed a mode-locked fs-laser system that can generate an octave-spanning frequency comb
(Slides 8-10), which allows us to compare the performance of these two standards with each other
and with H masers that are calibrated by the NIST Cs fountain.  A first comparison of the short-
term fractional instability between the two optical standards achieved a level of 7x10-15 @ 1 s
(Slide 12), more than an order of magnitude better than state-of-the-art microwave standards.
Recent absolute frequency measurements of the optical standards relative to Cs had uncertainties
of 1x10-14 for the Hg+ system (Slide 13) and 7x10-14 for the Ca system (Slide 14).  Repeated
frequency measurements have put constraints on the drifts of the transition frequencies relative to
Cs at < 10-13yr-1 level; these measurements could have serious implications concerning possible
drifts in the fundamental constants, a topic currently of great interest.

In order to bring these optical standards to their fundamental limits, we are presently
investigating several critical issues, two of which could directly benefit from a micro-g
environment.  The first concerns the laser local oscillators for these systems, which need to have
to exceptional spectral purity (instability less than 10-16) on short time scales (< 10 s) for the
optical standards to reach their predicted performance levels.  Most often this is achieved by
locking the frequency of the laser to a high-finesse, environmentally-isolated optical cavity.
Frequency fluctuations of the optical oscillator are then dominantly caused by seismic
perturbations that are coupled through the suspension system that must support the cavity against
the pull of gravity.  Since the frequency of the fundamental resonance of the isolation support
system is proportional to g1/2, seismic isolation could be more than three orders of magnitude
better in a micro-g environment.  Secondly, for the neutral atom systems, the pull of gravity limits
the attainable laser-atom interaction time to a fraction of a second, which in turn limits the
achievable line Q for the reference transition.  With suitably cold atoms, interaction times of 10 or
more seconds would be possible in micro-g, thus improving the performance of the neutral
optical standards by more than an order of magnitude.  We recently demonstrated a second-stage
cooling scheme for Ca that reduces the atomic temperature 200-fold (Slide 15), moving it into the
velocity regime where the acceleration due to gravity becomes problematic.

Donald Strayer
3-82



Slide 1    Introduction to optical atomic clocks, highlighting their advantages over their
microwave counterparts.

Slide 2   High resolution Bordé-Ramsey spectroscopy of the Ca clock transition using
5x106 cold atoms.  Data shown required 60 s of averaging time.
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Slide 3   Schematic diagram of the Ca trapping apparatus based on a frequency-doubled
diode laser.  With this system we can load ~107 atoms in 20 ms.

Slide 4  Measurement sequence for the generation of Ca spectroscopic signals.
Normalized shelving detection improves the signal-to-noise ratio by more than one order
of magnitude over red fluorescence detection.
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Slide 5   Ultra-high resolution spectroscopy of a single trapped 199Hg ion.  Linewidths
shown are Fourier-transform limited.

Slide 6   Photographs of ion trap (left) and a single trapped ion (right).
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Slide 9  Introduction to mode-locked fs-laser-based frequency combs.  The Fourier
Transform of the pulse train in the time domain yields a comb of evenly-spaced
(frequency spacing equal to the repetition rate) lines in the frequency domain.

Slide 10   “Self-referencing” of the comb produces a signal used to control the offset
frequency between the comb lines and absolute zero.  Locking up the repetition rate to a
maser referenced to the NIST time scale then enables absolute frequency measurements
of the optical standards.  To increase the frequency span of the comb to one octave or
more, the output of the fs-laser is sent through a microstructure fiber.

Periodicity in Time Domain = Periodicity in Frequency Domain

•Initial efforts/ideas:  J. Eckstein, A. Ferguson & T. Hänsch (1978), V. P. Chebotayev (1988)
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Slide 7   Spectroscopy at the decahertz level requires extremely stable lasers.  Here the
resultant beatnote between lasers locked to independent cavities shows a width well
under 1 Hz over an averaging time of 20 s.

Slide 8   In order to connect frequencies between the optical and microwave domains we
use a mode-locked femtosecond laser to serve as a “reduction gear”.

Beatnote Between Lasers Stabilized to Independent Cavities
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50,000:1 Reduction Gear
(not to scale!)

RF to optical clockwork with a femtosecond laser comb
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Slide 11   The introduction of mode-locked fs-laser frequency metrology has
revolutionized the field of optical standards.  Here we see the dramatic increase in the
number of absolute frequency measurements per year.

Slide 12   The measured Allan Deviation between the Hg+ and Ca systems.  The 76 THz
frequency gap between the standards is bridged by the mode-locked laser.  Note that the
optical standards perform significantly better than the best microwave atomic standards.
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Slide 13   A time series of frequency measurements of the Hg+ clock transition relative to
the NIST time scale calibrated by the primary Cs standard.

Slide 14   Measurements of the Ca clock transition frequency.  The NIST fs-laser
measurements had a statistical uncertainty of ~ 5 Hz, but residual Doppler shifts led to a
final uncertainty of 26 Hz.

-30

-20

-10

0

10

20

30

f Hg
+

-1
 0

64
 7

21
 6

09
 8

99
 1

45
.0

 (
H

z)

Aug 00 Feb 01 Aug 01 Feb 02

Measurement Date

Weighted Average of all Data:
...899 145.0(1.6) Hz

 
Original Number Reported in PRL:  ...899 142.6(2.5)

Hg+ clock absolute frequency measurements

Upper limit of electic
quadrupole shift 

estimated to be 10 Hz

Ca absolute frequency measurements- comparisons

Jul 94 Dec 95 Apr 97 Sep 98 Jan 00 Jun 01

Date

-300

-200

-100

0

100

200

300

M
ea

su
re

d 
Fr

eq
ue

nc
y 

- 
N

IS
T

 V
al

ue
 (

H
z)

NIST fs-laser 

PTB fs-laser PTB harmonic chain 

CCDM

Uncertainty
 dominated by

1st  order Doppler
shift

Donald Strayer
3-89



Slide 15   Since the Ca clock results were limited by the residual velocity of the laser-
cooled atoms (vrms ~ 70 cm/s), we have implemented second-stage cooling of Ca.  This
technique takes advantage of the high velocity selectivity of the clock transition and
enhances the cooling rate by quenching the excited state with a laser at 552 nm.

Slide 16   Future improvements in these standards should produce fractional frequency
uncertainties below 10-16.
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Spin-Mass Interaction Low-Temperature Experiment on ISS

Ho Jung Paik and M. Vol Moody
Department of Physics, University of Maryland, College Park, MD 20742

Donald M. Strayer
Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109

The objective of SMILE (Spin-Mass Interaction Low-temperature Experiment) is to
search for interaction between intrinsic spin of particles and mass.  SMILE is an ISS ex-
periment capable of approaching, to within a factor of 100, the spin-mass interaction al-
lowed for the axion.  The Brownian motion provides the ultimate limit of sensitivity for a
gravity experiment.  The low-g environment of space permits nearly free suspension of
the test mass, under which the highest resonance quality factor can be attained, limited
only by interaction with residual gas molecules.  SMILE employs a superconducting dif-
ferential angular accelerator, a very sensitive force sensor.  The differential accelerometer
is capable of rejecting the accelerations of the platform to extremely high precision.  The
spin source is an elongated toroid with alternating sections formed from two high-
permeability materials with different saturation spin densities.

1. Objectives of SMILE

Several modern theories predict the existence of light-mass pseudoscalar bosons, which
should give rise to a force between intrinsic spin and mass.  The best motivated of such bosons,
the axion, appears in the well-known Peccei-Quinn (1977) solution to the “strong CP problem”
of particle physics.  For an electron with spin polarized in the direction ŝ  and an unpolarized
nucleon, the interaction potential is given (Moody and Wilczek, 1984) by
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where me is the mass of the electron, r̂  is the unit p osition vector of the nucleon relative to the
electron, and l is the range of the force, which is inversely proportional to the axion mass.  The
dimensionless coupling constants gs and gp are related to q and l (Blaser et al., 1996) by
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where q is a dimensionless angle £ 3 _ 10–10 and l is in meters.

The best direct limit on gsgp at short range comes from the experiment of Ni et al. (1999):
gsgp < 1 ¥  10–28 for l ≥ 3 cm.  SMILE (Spin-Mass Interaction Low-temperature Experiment)
aims at approaching the axion limit to within two orders of magnitude at l = 1 mm.  Although
the experiment may fall short of actually detecting the axion, it will search for generic spin-mass
coupling mechanisms 108 times weaker than currently observable.  A positive result would con-
stitute the discovery of a new interaction in nature, and would have a major impact in particle
physics and astrophysics.



Figure 1 shows the ex-
pected resolution of SMILE
versus l.  Also shown are
the best existing limit by ,
the theoretical upper limit
for the axion, and the ex-
pected resolution of our
ground experiment, and the
potential sensitivity of a
free-flyer experiment.
SMILE will demonstrate
many crucial components of
the ultimate free-flyer ex-
periment, including the high
Q of the test masses in mi-
cro-g and the acceleration
rejection capability of the
detector.

2. Scientific Value of Spin-Mass Coupling Experiment

Test of General Relativity.  The existence of a spin-mass coupling implies a violation of the
Equivalence Principle, a cornerstone of General Relativity.  Although STEP (Satellite Test of the
Equivalence Principle) aims at extending the limits of the Equivalence Principle to one part in
1018, the spin-coupling violation cannot be detected by STEP, since it uses unpolarized test
masses.  Thus SMILE complements STEP in testing General Relativity.

Strong CP problem.  The Standard Model of particle physics successfully accounts for all
existing particle data; however, it has one serious blemish: the strong CP problem.  Strong inter-
actions are such that parity (P), time reversal (T), and charge conjugation (C) symmetries are
automatically conserved in perturbation theory.  However, non-perturbative effects induce viola-
tions of P and CP, parameterized by q.  The a priori expectation of q is of the order of unity, but
no violations of P or CP have been observed in strong interactions.  In particular, present upper
bounds on the neutron electric dipole moment (Altarev et al., 1992) require q £ 3 _ 10–10.  Peccei
and Quinn  (1977) developed an attractive resolution of this problem.  One ramification of their
theory is the existence of a new light-mass boson, the axion (Weinberg, 1978; Wilczek, 1978).

Thus, the detection of spin-mass coupling at the level predicted by axion models would pro-
vide the first direct experimental confirmation of a solution to the serious deficiency in the Stan-
dard Model.  In a more general sense, the detection of spin-mass coupling would be the first ob-
servation of macroscopic parity (P) and time reversal (T) symmetry violation.

Cold dark matter.  The axion could also solve the major open question in astrophysics: the
composition of dark matter. Galactic rotation curves and inflation theory require that there
should be more mass in the universe than has been observed.  Although neutrino mass,
MACHOs (MAssive Compact Halo Objects), and many hypothetical particles have been offered
as explanations, the solution remains elusive.  The axion is one of the strongest candidates for the
cold dark matter (Turner, 1990).
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3. Principle of Experiment

Required sensitivity.  The torque between a
polarized source with an electron spin density rs

and a test mass of nucleon density rN is given
(Blaser et al., 1996) by
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where I is the integral of the potential:
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Here the integration is performed over the vol-
umes of the spin source and the test mass.  There
is some subtlety involved in the design of a spin
source.  The integral I vanishes identically for any
closed loop of spin (Shaul et al., 1996).  Thus, a
source with alternating materials is needed, with the greatest possible contrast in spin density.

Figure 2 shows the angular acceleration signal computed for our source and detector design
as a function of l for q = 3 ¥ 10–10.  A maximum differential angular acceleration signal of 1.0 ¥
10–19 rad s–2 occurs at l ~ 1 mm.  To achieve the required sensitivity, the intrinsic noise of the
instrument as well as its isolation from seismic, gravitational, and electromagnetic disturbances
must be improved by several orders of magnitude over existing devices.

Spin source.  Figure 3 shows the cross section of the spin source and a test mass perpen-
dicular to the rotation axis, along with associated coils.  The source is an elongated toroid with
32 alternating sections formed from two high-
permeability materials with different saturation
spin densities.  Sixteen ridges on the inner sur-
face of the test mass shell allow coupling to the
spin source.  To generate a differential torque,
the ridges of test mass 1 are aligned with mate-
rial A while those of test mass 2 are aligned
with material B.  A low-frequency current
through toroidal windings modulates the spins
in the source materials.  A superconducting
shield (not shown) isolates the test masses from
the magnetic field of the source.

Detector.  The detector consists of two
identical angular accelerometers.  The test
masses are magnetically levitated and have cy-
lindrical symmetry to high order.  Due to its
quantum nature, superconducting magnetic
levitation is extremely stable, permitting a very
high passive common-mode rejection ratio
(CMRR) to be maintained.
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Figure 2.  Angular acceleration corre-
sponding to q = 3 ¥ 10–10 as a function of l.
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Figure 3.  Cross section of the spin source and
one test mass with alignment and sensing coils.



Figure 4 shows a cross section of the spin
source and test masses parallel to the rotation
axis.  Coils coupled to the outer surfaces of the
test masses permit alignment of the acceler-
ometer sensitive axes as well as detection of
the linear and angular acceleration of the plat-
form.  The two test masses are coupled to-
gether through the rotation sensing coils, fac-
ing their ridges (see Figure 3), to form a dif-
ferential angular accelerometer.

Due to the cylindrical symmetry, the forces
applied by the external coils do not couple to
the test mass angular degree of freedom about
the sensitive axis.  Further, an angular acceler-
ometer is intrinsically insensitive to forces
arising from the charge on the test mass and
temperature gradient across the instrument.

4. Experimental Hardware

Overview of the apparatus.  The spin
source is completely wrapped with a niobium
(Nb) shield.  Two sensing coil forms are mounted on the middle flange outside the shield, and
the two test masses ride on these coil forms.  Outside the test masses, four alignment coil forms
are assembled and mounted on the middle flange.  The entire apparatus is fastened to the second-
stage thermal platform of the Cryo Insert, with its long axis pointing along-track (x-axis) (Figure
5).  The temperature of the platform is stabilized to 5 mK.  The basic cryogenic requirements of

Test
mass 2

11+
11+

11- 12-

12+

11-

Test
mass 1

Spin
source

12+

12-

Figure 4.  Cross sectional view of the apparatus
along with suspension and alignment coils.

Figure 5.  The ISP mounted on the Cryo Insert and the LTMPF dewar.
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SMILE are met by the standard provision of LTMPF.  The main upgrade required is adding a
cryopump to reduce the pressure to 10–10 torr.  Due to the excellent CMRR of the superconduct-
ing differential accelerometer, SMILE does not require vibration isolation.

Spin source.  For transition metals, crystal field quenching of orbital angular momentum, L,
implies that total atomic angular momentum, J, approximately equals the intrinsic spin, S.  Be-
low the Curie temperature, rS is given by 2M/gmB, where M is the magnetization, g is the spec-
troscopic splitting factor (ª 2), and mB is the Bohr magneton.  Hence, materials with similar
magnetizations will have similar spin densities.  The solution lies in the use of materials con-
taining rare-earth elements.  The rare-earth elements below gadolinium (Gd) are particularly in-
teresting, because for these, J = L – S, so the intrinsic spins are anti-parallel to the magnetization.

Newman (1983) used this concept in a toroidal spin source consisting of NdNi and GdNi5.
For SMILE, we propose to combine NdNi with Magnifer 7904 (80% Ni, 14% Fe, 5% Mo), a soft
high-m transition metal.  The source is designed such that Magnifer completely shields NdNi,
intercepting any magnetic field from it.  The saturation magnetic field of Magnifer is ~ 0.75 T.
When driven to an amplitude of 0.35 T, rs will be modulated to 2.9 ¥ 1028 m–3 for NdNi (Gra-
ham, 1987) and 3.0 ¥ 1028 m–3 for Magnifer, with opposite spin directions.  This results in the
angular acceleration signal plotted in Figure 2.

The main structure pf the source is machined out of Magnifer.  Along the length of the tor-
oid, 16 identical, evenly distributed, pockets are machined using wire EDM (electric discharge
machine).  NdNi is melted and poured into the pockets in the Magnifer form.  A Nb coil is
wound toroidally about the source to provide the charging field.  A 0.38-mm thick Nb tube
shields test masses from the magnetic field in the spin sources.  To reduce the crosstalk between
the leads, the source will be driven with a small external current through a superconducting
transformer located inside the toroid.

Test masses.  The test mass will have 16 ridges
which interact with the source.  To obtain a large
nucleon density (rN = 1.00 ¥ 1031 m–3), the ridges
will be fabricated out of tantalum (Ta), a type-I su-
perconductor of high density (16.6 g cm-3), with a
relatively high transition temperature and critical
field.  However, to minimize the stray mass, the rest
of the test mass will be made out of Nb, a lighter
material (8.57 g cm-3) with excellent supercon-
ducting properties.  This design gives a mass of
0.28 kg and a moment of inertia of I = 1.5 ¥ 10–4 kg
m2.

Two prototype test masses have been machined
out of a single block of Nb, by turning the outer
surfaces on a lathe and then cutting the ridges with
a wire EDM (see Figure 6).  To fabricate a SMILE
test mass, a Ta cylinder will first be tightly fitted
inside a Nb shell and diffusion-bonded.  The rest of

Figure 6.  Photograph of the prototype spin
source, test mass, and sensing coil form.
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the machining will follow the procedure established for the prototype.

General requirements for the circuits.  The superconducting circuits used in SMILE are of
the type fully analyzed and tested in our superconducting gravity gradiometer (SGG) project
(Chan and Paik, 1987; Chan et al., 1987).  A new feature is the feedback circuits provided for the
auxiliary accelerometers, which are required to actively stiffen and damp resonant modes of the
test masses.  The linearity requirement
of the differential accelerometer is
met without feedback.

In general, higher sensitivity can
be achieved by reducing the resonance
frequency of an accelerometer.  On
the other hand, the nonlinearity of
scale factors, which couples in the
platform noise, favors stiffer suspen-
sion.  We choose a compromise solu-
tion: the differential-mode (DM) and
common-mode (CM) frequencies of fD

= 0.01 Hz and fC = 0.04 Hz, respec-
tively.  This choice is also partially to
take advantage of the quietest noise
spectrum of the ISS at ~ 0.01 Hz.

The translational modes can be
tuned to higher frequencies to reduce
the displacements of the test masses.
However, the test masses must be left
as free as possible to obtain the high-
est Q for the accelerometer.  We
choose ~ 0.2 Hz, the minimum fre-
quency required to keep the random
excursion of the test masses to £ 10
mm, 10% of the coil gaps.   The modes
are then stiffened actively to ~100 Hz
to suppress the nonlinearity noise.

Suspension and alignment cir-
cuits.  Two concentric pancake coils
(Lxj1±’s in Figure 4) face either side of
each test mass flange.  Two inner
coils are coupled in the circuit shown
in Figure 7(a) to provide axial suspen-
sion.  The two SQUIDs detect linear
acceleration ax and gravity gradient
Gxx along the x-axis.  Two outer coils
(Lxj2±’s in Figure 4) are coupled in an
identical circuit (not shown), except
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that the SQUIDs are replaced by the leads for feedback currents.  This circuit will stiffen and
damp the CM and DM along the x-axis.

Eight curved pancake coils are symmetrically located about the outer surface of the cylinder
on either side of the flange.  The coils at 0° and 90° angles (Lyij±’s and Lzij±’s in Figure 3) are
connected to suspend the radial degrees of freedom.  Figure 7(b) is a schematic of the suspension
circuit for the y-axis.  The SQUIDs detect linear acceleration ay and angular acceleration az.

To remove coupling to cross-component angular accelerations, the accelerometer axes must
be aligned precisely.  The coils located at 45° angles (Lhij±’s and Lzij±’s in Figure 3) are used to
provide this alignment.  Figure 7(c) is the alignment circuit for the y = z plane.  This circuit is
also used to control the angular motion about the y = -z axis and the linear motion along the y = z
axis.  The signals from the radial suspension circuits are mixed with proper scale factors and fed
back to the feedback transformers to stiffen and damp both the linear and angular modes.

Angular acceleration sensing circuit.  Four elongated pancake coils (Lqij’s in Figure 3) are
provided for each test mass to sense the angular motion about the symmetry axis.   These coils
are connected in a circuit shown in Figure 7(d) to form a differential angular accelerometer.  The
two SQUIDs sense the common (ax) and differential (axD) angular acceleration about the x-axis.
The current ratio, Iq2/Iq1, is adjusted to balance out the CM from the DM output.  With the angu-
lar modes not actively controlled, the DM of QD = 1010 implies a decay time of 10 years!  The
SQUID protection heat-switches, Hxa and HxaD, are turned on when the modes get excited.

To wind the elongated pancake coils, the coil form holder is cut from Nb by wire EDM.  In
four orthogonal ridges, pockets are removed and filled with Stycast epoxy (see Figure 6) such
that, when a coil is wound, it is partially on the Nb and partially on the epoxy.  The part on the
epoxy is the active component of the coil, which senses the angular displacement of the test
mass.  The coils have been successfully fabricated using this procedure for the ground apparatus.

Coarse and fine heat-switches. Due to the high vibration levels of ISS, a special provision
must be made to be able to fine control the magnetic fluxes trapped in various superconducting
loops.  While a current is sent from a current source to a circuit, a test mass undergoes a random
excursion of 10 mm, which is about 10% of the nom inal spacing of the coils.  This means that at
the moment the heat-switch is turned off, the coil inductance, hence the trapped flux, is uncertain
to 10%, regardless of the resolution of the external current supply.  To overcome this problem,
two sets of heat-switches are provided.

Coarse heat-switches (Hij’s in Figure 7) warm up a short length of the Nb wire to a resistance
R ª 1 mW, resulting in an L/R time of about 10 ms.  These switches are used to store the currents
initially.  Fine heat-switches (hij’s) couple a low resistance path with Rd ª 0.1 mW to the circuit,
resulting in a time constant of about 100 s.  With 1-ms time resolution of the heat-switch, fluxes
can then be adjusted to 10-5.  This gives the ability to match the scale factors to 10-5 and align the
sensitive axes to 10-5 rad, resulting in a passive CMRR of 105 in all three degrees of freedom.

Dynamic error compensation.  The vibration rejection capability of a superconducting dif-
ferential accelerometer can be improved by compensating for the residual errors (Moody et al.,
1986).  With linear and angular accelerations measured simultaneously, the error coefficients can
be determined by shaking the platform along or about an axis and dividing the differential accel-
eration output by the particular acceleration component.  In our laboratory SGG, the component
accelerometers were balanced and aligned to 10-4, which gave an initial CMRR of 104.  Using



this error compensation technique, we were able to improve both the linear and angular accel-
eration rejection by a factor of 103 to a CMRR of 107 (Moody et al., 2002).

Applying the same gain to the SMILE detector, we should be able to achieve a CMRR of 108

for angular acceleration.  Due to the cylindrical symmetry, the outer coils cannot convert the lin-
ear acceleration of the platform into a torque on the test masses.  The linear acceleration does
couple, however, to the angular sensing circuit through mismatches in the inner sensing coils, in
particular, through mismatch in the coil areas.  With the expected mismatch of DA/A = 10-2 and a
stiffness ratio of (fD/fR)2 = 10-8 (with feedback) between the differential angular and linear
modes, the linear error coefficient for ay and az becomes
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where rS is the radial position of the sensing coils.  The error compensation reduces eL to 5 ¥
10-11 m-1.  The detector is insensitive to ax.

We will use the ISS vibration noise itself to shake the detector.  The accelerations will be
random and cross-correlated between various degrees of freedom.  However, we can apply a
well-established procedure in electrical engineering for determining the transfer functions for a
multiple-input system using noise alone (Bendat and Piersol, 1971).

5. Error Budget

Intrinsic instrument noise.  The intrinsic noise of an accelerometer is given by the
Brownian motion noise of the test masses and the noise in the readout circuit.  A dc SQUID is
employed as a very quiet amplifier.  The effect of the amplifier noise is reduced further by con-
ducting a resonance experiment.  When the spin source is driven at the resonance frequency f0

for integration time t, the response of the test masses to both the spin-mass coupling and the Ny-
quist torque, as well as the back-action noise of the amplifier, increases as Qeff, where Qeff repre-
sents the smaller of the Q and the product w0t.  Since the wideband noise of the amplifier is not
affected, the total amplifier contribution to the noise power is reduced by Qeff.

The intrinsic power spectral density of a differential angular accelerometer, operating as a
resonant detector, can be shown (Paik, 1982) to be
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where I is the moment of inertia and TN is the noise temperature of the amplifier.  The SQUID
spec for LTMPF, 30 mF0 Hz–1/2 with 1/f noise corner < 0.5 Hz, corresponds to TN @ 1.7 ¥ 10–6 K
at f0 = 10–2 Hz.  With t @ 7.8 ¥ 106 s (3 months), Qeff becomes 4.9 ¥ 104.  The amplifier noise is
then negligible for cases where Q < 1011.

A crucial question is how high a Q one can achieve for weakly suspended superconducting
test masses at 10–2 Hz.  The residual gas pressure can be improved to £ 10–10 torr by cryopump-
ing with activated charcoal.  The limit by residual gas damping at 10-10 torr is Q ª 1010 at 10–2

Hz.  There is no known damping mechanism in a high-purity superconductor cooled in a low
field that makes this level of Q unachievable.  With Q = 1010 and the design value I = 1.5 ¥ 10–4
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kg m2, the intrinsic noise of the differential an-
gular accelerometer becomes Sa

1/2(f) = 3.1 ¥
10–15 rad s–2 Hz–1/2.  While this is a demanding
sensitivity, the existing SGG has already
achieved the required resolution when the sen-
sitivity is expressed in terms of test mass dis-
placement.

Acceleration noise.  Figure 8 shows the
roll (x), pitch (y), and yaw (z) angular accelera-
tion spectra of ISS derived from the differential
GPS data during a reasonably quiet period.
The ISS is quietest between 0.003 and 0.03 Hz.
The angular acceleration noise at the signal
frequency 0.01 Hz is ~ 1 ¥ 10–7 rad s–2 Hz–1/2.
The net CMRR of 108 of the detector will reject
this noise to 1 ¥ 10–15 rad s–2 Hz–1/2 per axis.

Figure 9 shows the linear acceleration
spectra from MAMS data taken over the same
period as the above GPS data.  The acceler-
ometer position with respect to the ISS center
of mass (c.m.) was (16.472, -0.096, 0.222) m.
Along the y- and z-axis, the amplitude of the
linear acceleration is within a factor of two
from the value, angular acceleration times the
lever arm from the c.m.  This indicates that the
linear acceleration along these axes is mainly
the result of the angular acceleration of ISS.
This conclusion is confirmed by the fact that
the linear acceleration is lowest along the x-
axis, which runs within 1 m from the c.m.

With ISS fully assembled, LTMPF is ex-
pected to be at about the same distance from
the new c.m. of ISS.  So we use the spectra
shown in Figure 9 to estimate the linear accel-
eration noise.  The detector couples to the y-
and z-axis acceleration, 3 ¥ 10–6 m s–2 Hz–1/2 at
0.01 Hz.  With eL = 5 ¥ 10-11 m-1, this noise is
reduced to 1.5 ¥ 10–16 m s–2 Hz–1/2 per axis.

The nonlinearity in the detector coils cou-
ples to the y- and z-axis linear acceleration as
well as the angular acceleration about the x-
axis.  Using the nonlinearity coefficient meas-
ured in our SGG, we estimate the nonlinearity-
induced noise as plotted in Figure 10 before
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Figure 8.  ISS angular acceleration about x-
(red), y- (green), z- (blue) axis.
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Figure 9.  ISS linear acceleration along x- (red),
y- (green) and z- (blue) axis.
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applying feedback to the linear degrees of freedom.  While angular acceleration-induced noise is
at an acceptable level, 3 ¥ 10–15 m s–2 Hz–1/2, the linear acceleration-induced noise is five orders
of magnitude too high!  We solve this problem by actively stiffening the translational modes by
five orders of magnitude to a frequency of ~ 100 Hz.

Gravity noise.  Helium tide, which is an important error source for STEP, is absent due to
the Earth-fixed orientation of the ISS.  Helium sloshing is of minor concern since it is expected
to occur at a sufficiently low frequency, ~2.5 mHz.  The angular sensing and cylindrical symme-
try employed makes the detector very insensitive to gravity noise from helium slosh, the Earth’s
gravity gradient, and ISS self-gravity, including the activities of astronauts.

The source could couple to the detector gravitationally by magnetostriction and thermal ex-
pansion.  Fortunately, these effects will occur at the second harmonic and produce mainly a ra-
dial distortion of the source, which does not couple to the detector.

Magnetic noise. Cooling and performing the experiment in a low magnetic field will mini-
mize flux creep.  LTMPF is equipped with a Cryoperm shield that will help to produce a low-
field region.  The NdNi in the source will generate a remanent field as it cools through its Curie
temperature (~30 K).  This field will be trapped by the Magnifer and thus will be kept within the
source.

Magnetic crosstalk between the source and the detector is of serious concern.  The source is
completely wrapped with a Nb shield and all the detector coils are mounted inside a Nb housing.
The signal leads to the SQUIDs will be shielded with lead (Pb) tubing.  High-purity Nb will be
used and heat-treated to bring the material close to a type-I superconductor.  The superconduct-
ing shield is expected to give over 200-dB isolation (Rigby et al., 1990).

Electric charge effects.  The levitated test masses will accumulate electric charge from cos-
mic rays and from high-energy protons.  This charge will induce image charges on the neigh-
boring coils and superconducting ground planes, which produce a net force through asymmetries.
This would gradually displace the test masses, possibly deteriorating the CMRR of the detector.
SMILE is designed to be inherently insensitive to this effect.  By the fundamental nature of elec-
tricity, the excess charge always resides on the outer surface of a conductor, and the image
charges on the periphery of the test mass cannot exert a torque, again due to its cylindrical sym-
metry!  The radial force will couple to angular motion through asymmetry in cylindrical geome-
try.  A cylindricity of 10-5 leads to a maximum angular displacement of 5 ¥ 10–9 rad, which is an
order-of-magnitude below the level required to maintain a CMRR of 105.

The patch-effect potential on the test mass ridges and angular sensing coils could produce a
torque.  However, most crystal domain boundaries will
remain frozen at 2 K and the resulting dc torque will be
balanced out upon the CM balance.

Temperature noise.  The modulation of the penetra-
tion depth of a superconductor with temperature and re-
sidual thermal expansion coefficients for different materi-
als give rise to temperature sensitivity in a superconduct-
ing accelerometer (Chan and Paik, 1987).  These effects
lead to a temperature control requirement of £ 10–4 K
Hz–1/2 for SMILE.  A thermal link to the bath will be made
to restrict the temperature rise to < 0.1 K above the bath

Error Source Error
(¥ 10–19 rad s–2)

Random (90 days)
Intrinsic 11
Vibration 12
Gravity coupling <1
Magnetic coupling <5
Electric charge <1
Others (30% margin) 14
Total 22

Table 1.  Error budget.
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temperature when 1 mW power is produced by the experiment.  The temperature of the experi-
ment will be stabilized to ±5 mK.

Total errors.  Table 1 combines all the errors.  To reduce the random noise to the levels
listed, a 90-day integration was assumed.  The vibration noise contributes equally to the error
budget as the intrinsic noise of the instrument.

6. Expected Resolution of SMILE

By equating the total noise with the acceleration signal from spin-mass interaction (Figure 2),
we obtain the 1-s resolution of SMILE plotted in Figure 1.  This is compared with the sensitivi-
ties of the ground experiment as well as a free-flyer experiment.  For the ground experiment, we
have computed the sensitivity expected for the prototype source and test masses, which have al-
ready been fabricated.

For the free-flyer, we have scaled up the instrument by a factor of two and the noise is aver-
aged over two detectors flown together for 360 days.  Another improvement is cooling to 0.05 K
by He3/He4 dilution refrigerator.  Dilution refrigerators with this capability in zero-g are under
development at NASA Ames Research Center and elsewhere (Roach and Helvensteijn, 1999).
With fD = 10–3 Hz and Q = 1010, the intrinsic noise is improved by more than 200.  Improvement
in the vibration noise will be similar.  With a modest improvement of the spin contrast by a fac-
tor of two, we obtain an overall improvement of two orders of magnitude over SMILE.

Although the possible detection of the axion at the level allowed by the present theory may
take an experiment on a quieter free-flyer, SMILE will search for a generic spin-coupling force
in the large parameter space that has never been explored and constitutes an important new test
of General Relativity.  The ISS experiment will also pave way to an ultimate free-flyer experi-
ment by testing many crucial components of the apparatus.
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